Diplomarbeit

HEPATITIS-C-DIAGNOSTIK
Etablierung eines neuen HCV – Antikörpertests und Vorstellung einheitlicher Laborrichtlinien zur Qualitätssicherung nach internationalen Beispielen

ingereicht von

Gerfried Zuser

zur Erlangung des akademischen Grades

Doktor der gesamten Heilkunde
(Dr. med. univ.)

an der

Medizinischen Universität Graz

ausgeführt am

Institut für Hygiene, Mikrobiologie und Umweltmedizin

unter der Anleitung von

Sen.-Scientist Priv.-Doz. Dr.med.univ. Christoph Koidl
&
Assoz.Prof. Priv.-Doz. Dr.rer.nat. Hubert Scharnagl

Graz, am 14.04.2015
Eidesstattliche Erklärung

Graz, am 14.04.2015

Gerfried Zuser eh
Gleichheitsgrundsatz:
Aufgrund der besseren Lesbarkeit wird in der nachfolgenden Arbeit teilweise das generische Maskulinum verwendet, welches sich selbstverständlich gleichermaßen und uneingeschränkt auf beide Geschlechter beziehen soll.
Danksagung

Mein innigster Dank ergeht an meine Lieben und meine Betreuer.
1 VERZEICHNISSE ... V

1.1 ABKÜRZUNGSVERZEICHNIS ... V
1.2 TABELLENNACHWEIS ... VIII

2 ZUSAMMENFASSUNG ... 1

2.1 ENGLISCHES ABSTRACT ... 3
2.2 EINLEITUNG .. 5

3 ALLGEMEINER TEIL .. 7

3.1 EPIDEMIOLOGIE DER HEPATITIS C INFEKTION ... 7

3.1.1 Hervorstechende Prävalenzraten in Ägypten und Zentralafrika .. 8

3.2 HISTORISCHE ENTWICKLUNG DER HCV-INFEKTION ... 8

3.3 UMGANG MIT HEPATITIS IN EUROPA .. 9

3.4 MELDEWESEN IN ÖSTERREICH .. 10

3.5 HEPATITIS C – DAS VIRUS ... 11

3.5.1 Virale Proteine – Struktur und Funktion .. 11

3.6 HCV-GENOTYPEN ... 12

3.7 HEPATITIS C – ÜBERTRAGUNGSWEGE .. 14

3.8 DER LEBENSYKLUS DES HCV IM MENSCHLICHEN ORGANISMUS 15

3.8.1 Das Eindringen in die Wirtszelle .. 15

3.8.2 Das Virus in der Zelle – Translation und Replikation .. 17

3.8.3 Der Zusammenbau und die Ausschleusung .. 17

3.9 IMMUNREAKTION GEGEN HEPATITIS C ... 18

3.9.1 Frühreaktionen des Immunsystems .. 18

3.10 MöGGLICHKEITEN DES HEPATITIS-C-VERLAUFS .. 19

3.11 BESONDERE EIGENSCHAFTEN DES HEPATITIS-C-VIRUS ... 20

3.11.1 Die Onkogenese des Hepatitis-C-Virus ... 21

3.12 PRÄVENTION ... 22

3.13 DER UMGANG MIT BLUT UND BLUTPRODUKTEN IN DER MEDIZIN 23

3.13.1 Blutspenderrichtlinien und Gesetze in Österreich .. 23

3.14 LABORTESTMETHODEN FÜR HEPATITIS C IN DER ÜBERSICHT 23

3.15 LABORCHEMISCHE VERFAHREN ZUM ANTIKÖRPERNACHWEIS 24
3.15.1 Rekombinante Immunoblot Assays ... 25
3.15.2 Grenzen der Anti-HCV-Diagnostik ... 26

3.16 Suche und Untersuchung auf HCV-RNA ... 27
3.16.1 Der Nachweis des Hepatitis-Virus über RNA-Suche ... 27
3.16.2 Der Nachweis von HCV-RNA in Patientenproben .. 27
3.16.3 Viruslast ... 28
3.16.4 Bestimmung des HCV-Genotyps .. 29

3.17 Allgemeine Interpretation von Testergebnissen ... 29

3.18 Zusammenschau internationaler Qualitätsmanagementsysteme für
Laboratorien ... 31
3.18.1 Die Entstehung von Qualitätsnormen ... 31
3.18.2 Zertifizierung versus Akkreditierung .. 32

4 MATERIAL & METHODIK .. 34

4.1 Ein- und Ausschlusskriterien ... 34
4.1.1 Ethikkommissionsvotum ... 34

4.2 Probenvorbereitung ... 34

4.3 Beschreibung des Abbott Architect™ Anti-HCV-Test .. 35

4.4 Beschreibung des VIDAS® Anti-HCV-Tests ... 38

4.5 Statistische Methoden ... 41

4.6 Die Variabilitätskonstanten Inter- und Intra-Assay .. 41
4.6.1 Intra-Assay .. 41
4.6.2 Inter-Assay ... 41
4.6.3 Schwankungsbereiche, Fehlerquellen bei Inter- bzw. Intra-Assay Messungen 41

4.7 Die Auswertung mittels Passing-Bablok-Regression .. 42

4.8 Die ISO-Normenreihe 9000# ... 43
4.8.1 Die Übersicht über die EN ISO 9001 ... 43
4.8.2 Allgemeine Anforderungen der ISO 9001 ... 44
4.8.3 Dokumentationsanforderungen unter ISO 9001 ... 44
4.8.4 Aufgaben der firmeninternen Leitung unter ISO 9001 .. 45
4.8.5 Personelle Ressourcen unter ISO 9001 .. 45
4.8.6 Infrastruktur unter ISO 9001 .. 46
4.8.7 Produktrealisierung und Weiterentwicklung unter ISO 9001 46
8.1 Ergebnistabelle im Detail

8.1.1 Legende für Ergebnistabelle im Detail

8.1.2 Tabelle der Nachmessungen
1 VERZEICHNISSE

1.1 Abkürzungsverzeichnis

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALT</td>
<td>Alanin Aminotransferase</td>
</tr>
<tr>
<td>ANA</td>
<td>antinukleärer Antikörper</td>
</tr>
<tr>
<td>Anti-HCV</td>
<td>Antikörper gegen HCV</td>
</tr>
<tr>
<td>AP</td>
<td>alkalische Phosphatase</td>
</tr>
<tr>
<td>AST</td>
<td>Aspart Aminotransferase</td>
</tr>
<tr>
<td>BM</td>
<td>Bundesministerium</td>
</tr>
<tr>
<td>BMI</td>
<td>Body Mass Index</td>
</tr>
<tr>
<td>bp</td>
<td>base pairs</td>
</tr>
<tr>
<td>bp</td>
<td>Basenpaare</td>
</tr>
<tr>
<td>BS</td>
<td>British Standard</td>
</tr>
<tr>
<td>BSG</td>
<td>Blutsicherheitsgesetz</td>
</tr>
<tr>
<td>CD</td>
<td>cluster of differentiation</td>
</tr>
<tr>
<td>CDC</td>
<td>Center of Disease Control</td>
</tr>
<tr>
<td>CLIA</td>
<td>Clinical Laboratory Improvement Amendments</td>
</tr>
<tr>
<td>CLSI</td>
<td>Clinical and Laboratory Standard Institute</td>
</tr>
<tr>
<td>CMIA</td>
<td>Chemilumineszenz-Mikropartikel-immunoassay</td>
</tr>
<tr>
<td>CMIA</td>
<td>Chemilumineszenz Mikropartikelimmunoassay</td>
</tr>
<tr>
<td>CMV</td>
<td>Cytomegalie Virus</td>
</tr>
<tr>
<td>CYP</td>
<td>Cytochrom P</td>
</tr>
<tr>
<td>DAkkS</td>
<td>Deutsche Akkreditierungsstelle</td>
</tr>
<tr>
<td>EA</td>
<td>European co-operation for Accreditation</td>
</tr>
<tr>
<td>EBV</td>
<td>Eppstein Barr Virus</td>
</tr>
<tr>
<td>EDTA</td>
<td>Ethylene Diamine Tetraacetic Acid</td>
</tr>
<tr>
<td>ELFA</td>
<td>Enzyme-Linked-Fluorescent Assay</td>
</tr>
<tr>
<td>ELISA</td>
<td>enzyme-linked immunosorbent assay</td>
</tr>
<tr>
<td>EN</td>
<td>Europa Norm</td>
</tr>
<tr>
<td>EU</td>
<td>Europäische Union</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>GCP</td>
<td>good clinical practice</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>GLP</td>
<td>good labor practice</td>
</tr>
<tr>
<td>GOT</td>
<td>Glutamat Oxalacetat Transaminase; vormals AST</td>
</tr>
<tr>
<td>GPT</td>
<td>Glutamat-Pyrovat-Transaminase; vormals ALT</td>
</tr>
<tr>
<td>HAV</td>
<td>Hepatitis A</td>
</tr>
<tr>
<td>HäVo</td>
<td>Hämmovigilanz-verordnung</td>
</tr>
<tr>
<td>HBV</td>
<td>Hepatitis B</td>
</tr>
<tr>
<td>HCC</td>
<td>hepatozelliguläres Carcinom</td>
</tr>
<tr>
<td>HCV</td>
<td>Hepatitis C</td>
</tr>
<tr>
<td>HDL</td>
<td>high density lipoprotein</td>
</tr>
<tr>
<td>HDV</td>
<td>Hepatitis D</td>
</tr>
<tr>
<td>HIV</td>
<td>Humanes Immundefizienz Virus</td>
</tr>
<tr>
<td>hSOD</td>
<td>Humane Superoxiddismutase</td>
</tr>
<tr>
<td>HSV</td>
<td>Herpes simplex Virus</td>
</tr>
<tr>
<td>IE</td>
<td>internationale Einheiten</td>
</tr>
<tr>
<td>IEC</td>
<td>International Electrotechnical Commission</td>
</tr>
<tr>
<td>IfSG</td>
<td>das deutsche Infektionsgesetz</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IgG</td>
<td>Immunglobulin G</td>
</tr>
<tr>
<td>IL 28B</td>
<td>Interleukin 28 Typ B</td>
</tr>
<tr>
<td>ILAC</td>
<td>International Laboratory Accreditation Cooperation</td>
</tr>
<tr>
<td>ISO</td>
<td>International Organization for Standardization</td>
</tr>
<tr>
<td>IT</td>
<td>Informationstechnologie</td>
</tr>
<tr>
<td>IU</td>
<td>international Units</td>
</tr>
<tr>
<td>LDL</td>
<td>low density lipoprotein</td>
</tr>
<tr>
<td>LYME</td>
<td>Lyme Borreliose</td>
</tr>
<tr>
<td>MD5</td>
<td>Message Digest Algorithm der fünften Generation</td>
</tr>
<tr>
<td>MHC</td>
<td>major histocompatibility complex</td>
</tr>
<tr>
<td>MIL-Q</td>
<td>Military Specification - Quality Program Requirements</td>
</tr>
<tr>
<td>MW</td>
<td>Mittelwert</td>
</tr>
<tr>
<td>NANBH</td>
<td>NonA/NonB-</td>
</tr>
<tr>
<td>NS</td>
<td>Nicht-Strukturprotein des Hepatitis-C-Virus</td>
</tr>
<tr>
<td>NTR</td>
<td>Nicht-translatierende Region</td>
</tr>
<tr>
<td>NYHA</td>
<td>New York Heart Association</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Definition</td>
</tr>
<tr>
<td>------------------</td>
<td>--</td>
</tr>
<tr>
<td>ÖGHMP</td>
<td>Österreichische Gesellschaft für Hygiene, Mikrobiologie und Präventivmedizin</td>
</tr>
<tr>
<td>PBR</td>
<td>Passing-Bablok-Regression</td>
</tr>
<tr>
<td>PCR</td>
<td>polymerase-chain-reaction</td>
</tr>
<tr>
<td>PEG-IF</td>
<td>pegyiertes Interferon</td>
</tr>
<tr>
<td>QM</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>QMS</td>
<td>Qualitätsmanagement-System</td>
</tr>
<tr>
<td>RFV</td>
<td>Relative Fluorescence Value</td>
</tr>
<tr>
<td>RIBA</td>
<td>Rekombinanter Immunoblot Assay</td>
</tr>
<tr>
<td>Rili-BÄK</td>
<td>Richtlinien der Bundesärztekammer</td>
</tr>
<tr>
<td>RLE</td>
<td>relative Lichteinheiten</td>
</tr>
<tr>
<td>RNA</td>
<td>Rubonuclein acid</td>
</tr>
<tr>
<td>RNS</td>
<td>Rubonuklein Säure</td>
</tr>
<tr>
<td>SI</td>
<td>Système international d'unités</td>
</tr>
<tr>
<td>SR-B1</td>
<td>Scavenger Rezeptor Typ B Klasse 1</td>
</tr>
<tr>
<td>TÜV</td>
<td>Technischer Überwachungsverein</td>
</tr>
<tr>
<td>US</td>
<td>United States</td>
</tr>
<tr>
<td>USA</td>
<td>United States of America</td>
</tr>
<tr>
<td>VK(%)</td>
<td>Variationskoeffizient in Prozent</td>
</tr>
<tr>
<td>VLDL</td>
<td>very low density lipoprotein</td>
</tr>
<tr>
<td>VZV</td>
<td>Varizella Zoster Virus</td>
</tr>
<tr>
<td>γ-GT</td>
<td>Gamma Glutamyltransferase</td>
</tr>
</tbody>
</table>
1.2 Tabellennachweis

Tabelle 1 Angezeigte Fälle von Hepatitis insgesamt und HCV im Detail in Österreich
 Quelle: Statistik Austria, Angezeigte Fälle übertragbarer Krankheiten 2003 bis 2012

Tabelle 2: Häufigkeit der HCV-Genotypen in Österreich
 Quelle: Institut für Technikfolgen-Abschätzung der österreichischen Akademie der Wissenschaften: Chronische Hepatitis C, Implikationen für Therapie und ökonomischen Ressourceneinsatz in Österreich, Wien 2004

Tabelle 3 Essentielle Wirtsproteine für das Hepatitis-C-Virus

Tabelle 4 Ergebnisse von HCV Testung und deren Interpretation
 Quelle: 1, 37

Tabelle 5 Interpretation des Testergebnisses von Abbott ARCHICTECT™ Anti-HCV
 Quelle: 40, 41

Tabelle 6 Interpretation des Testwertes des VIDAS® Anti-HCV Test
 Quelle: 39

Tabelle 7 Kreuztabelle Auswertung ARCHICTECT®

Tabelle 8 Kreuztabelle Auswertung VIDAS®

Tabelle 9 Nachmessungen von indifferenten Proben

Tabelle 10 Intra-Assay VIDAS®

Tabelle 11 Intra-Assay ARCHICTECT®

Tabelle 12 Inter-Assay VIDAS®

Tabelle 13 Inter-Assay ARCHICTECT®

Tabelle 14 Auswertung der Patientenproben im Detail

Tabelle 15 Legende für Ergebnistabelle

Tabelle 16 Tabelle der Nachmessungen
2 Zusammenfassung

Material & Methoden

Die statistische Auswertung erfolgte einerseits über die Passing-Bablok-Regression und andererseits über die Berechnung des relativen Mittelwerts.

Ergebnisse

Insgesamt zeigte der ARCHITECT® 62 positive Ergebnisse, während der VIDAS® 48 positive Ergebnisse erbrachte. Damit erkannte der ARCHITECT® 38/40 richtig positive und 36/60 richtig negative Ergebnisse. Das bedeutet im Umkehrschluss, dass es 24 falsch positive Ergebnisse und 2 falsch negative Testergebnisse gab. Der VIDAS® zeigte 39/40 richtig positive und 51/60 richtig negative Ergebnisse. Im Umkehrschluss bedeutet dies 9 falsch positive und 1 falsch negatives Messergebnis. Jeweils 6 falsch-positive Ergebnisse wurden bei den gleichen Proben gemessen.
Der relative Mittelwert des VIDAS® beträgt 109% in Bezug auf den ARCHITECT®, der mit 100% gegenübergestellt wird.

Diskussion

Der ARCHITECT®-Test zeigte eine deutlich niedrigere Spezifität im Vergleich zum VIDAS® Assay auf. Die Sensitivität ist für beide Assays annähernd gleich.

Der neu entwickelte VIDAS® Test scheint damit durchaus Vorteile für die Anwendung in Laboratorien zu besitzen.

Die Qualitätsmanagementnorm ISO 9001, welche eine Zertifizierung benötigt, ist der weltweit am meisten verbreitete Standard.

2.1 Englisches Abstract

OBJECTIVES:
In the first part of this diploma thesis we compared two ELISA-HCV-antibody tests with different antigen components used in basic diagnostics.
Our aim was to investigate the performance of the new bioMerieux VIDAS® anti-HCV-test on the VIDAS® instrument in comparison to the established Architect™ Anti-HCV assay from Abbott. We wanted to assess the concordance of the assays and compare the performance, reliability and practicability.
The second part is a summary of international quality-management-systems for laboratories.

METHODS:
For this retrospective study we used 100 serum samples, which were routinely tested for the presence of antibodies to HCV. In a first step all samples were tested with the Architect™ Anti-HCV Assay on the Architect i2000SR® instrument for testing (Abbott, Wiesbaden, Germany). In a second step all samples were tested with the VIDAS® Anti-HCV-Test on the VIDAS® instrument (bioMérieux SA, Marcy l’Etoile, France). In addition confirmation of all results was performed with the INNO-LIA™-HCV Score (INNOGENETICS N.V., Ghent, Belgium). In case of an unclear serological result samples were additionally molecular analysed with the COBAS® AmpliPrep/COBAS® TaqMan® HCV Qualitative and Quantitative Tests, v2.0. (Roche Molecular Diagnostics, Mannheim, Germany).
The statistical evaluation was realized with the Passing-Bablok-Regression and the calculation of the average value.

RESULTS:
In our screening the Architect™ Anti-HCV assay identified 62 positive samples. The VIDAS® Anti-HCV-test found 48 positive samples. The additional confirmation and PCR testing identified 40 positive and 60 negative test results. Overall the Architect™ assay identified 24 false-positive samples, 36/60 samples as correct-negative and 2 samples as false-negative. The VIDAS® detected 9 false-positive samples, 51/60 samples as correct-negative and 1 sample as false-negative. Both tests identified 6 false-positive results at the same samples.
The average value of VIDAS® is 109% in reference to the ARCHITECT®.
CONCLUSIONS:

With the new VIDAS® anti-HCV assay we found a higher specificity in this study. The sensitivity of both screening assays was found to be equivalent. The VIDAS® assay proved to be suitable for the routine diagnostic laboratory allowing a rapid and safe detection of antibodies to HCV.

The most common quality-management-system is the ISO 9001. This ISO Norm needs a certification. The ISO 17025 and the ISO 15189 are especially made for laboratories and the needs a accreditations. This accreditation is much more expansive but in return these laboratories get more public orders.
2.2 Einleitung

Die Hepatitis-C ist eine weltweit stark verbreitete Erkrankung. In unterschiedlicher Literatur werden Zahlen zwischen 150 bis 250 Millionen Betroffenen angegeben. Eine weitere Verbreitung findet das Virus in der älteren Bevölkerung, vor allem jene Patienten, die vor 1990 eine Bluttransfusion erhalten haben. Bei den Jüngeren werden intravenös Drogenabhängige als Hochrisikogruppe angegeben. Auch die geografische Lage ist von besonderer Bedeutung. So variieren die Prävalenzangaben zwischen ein bis zwei Prozent in USA und Mitteleuropa und bis zu 20 Prozent im Nildelta.\(^1,2,5,11,12,25,30\)

Ein großes Problem stellt die fehlende Prophylaxe in Form einer Impfung oder Ähnlichem dar. Im Gegensatz zu anderen Hepatitiden kommt es häufig zu schweren Folgeerkrankungen wie Leberzirrhose oder hepatozellulären Carcinomen. Dies ist stark abhängig von Dauer und Verlauf der Infektion. Da diese Erkrankung nach wie vor ein Schreckgespenst der Medizin ist, muss möglichst früh mit einer Therapie begonnen werden. Um dies zu gewährleisten, ist die Früherkennung und damit der Labornachweis der wesentliche Faktor.\(^1,2,5,11,28,29,30\)

In der hier vorliegenden Arbeit soll einerseits das Hepatitis-C-Virus und sein Verhalten im Organismus abgehandelt werden, andererseits werden zwei HCV-Antikörper-Tests verglichen.

Ein Test wird bereits in der Routinediagnostik verwendet, der andere ist erst seit Kurzem kommerziell verfügbar. Die Tests werden auf Ihre Verlässlichkeit, auf ihre Aussagekraft und deren Anwendbarkeit geprüft. Im Wesentlichen sollen die Faktoren Spezifität und die Sensitivität der Tests verglichen werden.

Insbesamt wurden für diese Testreihe 100 Patientenproben herangezogen, die innerhalb eines Jahres am Institut für Hygiene, Mikrobiologie und Umweltmedizin der Medizinischen Universität Graz im Routinebetrieb getestet wurden.

Alle diese Proben wurden verlässlich anonymisiert und mit dem Präfix „sample“ sowie dem Subfix „1 – 100“ aufsteigend durchnummeriert.

Somit ist ein Rückschluss auf die sensiblen Patientendaten innerhalb dieser Arbeit nicht möglich.
Das beigefügte englische Abstract wurde als Poster bei der 34.ÖGHMP Jahrestagung im Juni 2014 in Bad Ischl präsentiert.
Innerhalb dieser Arbeit werden auch Beispiele internationaler Laborstandards vorgestellt und miteinander verglichen. Es hat sich aus langjährigen Erfahrungen herausgestellt, dass standardisierte Abläufe nicht nur den Arbeitsablauf erleichtern können, sondern auch Fehlerquellen aufdecken und verhindern sollen.
Letztlich dienen diese Standards auch der regionalen und internationalen Vergleichbarkeit von Ergebnissen.
Diese Arbeit soll eventuelle Vor- und Nachteile dieser Laborstandards aufzeigen und diskutieren.
3 ALLGEMEINER TEIL

3.1 Epidemiologie der Hepatitis C Infektion

Die Hepatitis-C gehört zu den häufigsten Virusinfektionskrankheiten weltweit, schätzungsweise sind zwischen 150 bis 250 Millionen Menschen chronisch an dem Hepatitis-C-Virus (HCV) erkrankt, davon entfallen etwa 5 Millionen Menschen auf Europa. Weltweit variiert die Prävalenz sehr stark. In Europa ist ein deutliches Nord-/Südgefälle nachweisbar, da in den nördlichen Ländern rund 0,5 Prozent der Bevölkerung chronisch positive Träger sind, während im Mittelmeerraum rund zwei Prozent betroffen sind.1,2,12,30,37

Laut der Akademie der Wissenschaften sind in Österreich etwa 0,5 bis ein Prozent der Bevölkerung Hepatitis C infiziert. In ganzen Zahlen wären dies bis zu 80.000 Einwohner. „Aktuell sind etwa 0,05 Prozent der Blutspender Anti-HCV positiv. Allerdings fehlt hier die entsprechende Datenlage über „falsch-positive“ Blutproben. Im Jahr 2003 waren laut Angabe der Blutspendezentrale Wien von 208.794 Blutspenden 116 Anti-HCV positiv.1

Deutschen Schätzungen folgend, sind für Österreich etwa 500 Neuerkrankungen pro Jahr zu erwarten.1 Die Neuerkrankungsrate für HCV liegt laut Statistik Austria zwischen 500 bis 1.100 jährlich. Auf diese Datenlage wird näher im Kapitel \textit{Meldewesen in Österreich} eingegangen.1,3,56

Besonders brisant ist die Tatsache, dass Patienten, die vor dem Jahre 1991 häufiger Blutkonserven bekamen oder dialysiert wurden, auch eine signifikant höhere Prävalenz haben als die Allgemeinbevölkerung.1,2,3,5,8,56

Die chronische Hepatitis-C Infektion führt über Jahre zu den pathologischen Bildern einer Leberzirrhose beziehungsweise im weiteren Verlauf zu einem hepatozellulären Carcinom. In Österreich wird davon ausgegangen, dass rund 37 Prozent aller hepatozellulären Carcinome durch das Hepatitis-C-Virus bedingt sind.1,8,26,56

Ein Blick in die USA zeigt, dass hier ein bis zwei Prozent der Einwohner chronische HCV-Träger sind, wobei Männer häufiger betroffen sind. Die Neuerkrankungsrate liegt hier zwischen 35.000 und 185.000 pro Jahr. In den USA wird HCV als hervorstechende Ursache für Leberzirrhose, hepatozelluläre Carcinome und den oftmals damit verbundenen Transplantationen angesehen. In den Vereinigten Staaten liegen auch Statistiken bezogen auf die ethnische Herkunft vor. So sind Menschen mit schwarzer Hautfarbe mit 3,2 Prozent, Menschen mit spanischen Wurzeln mit 2,1 Prozent und Weiße mit 1,5 Prozent angegeben.2
Weltweit herausragend sind afrikanische Gebiete wie Ägypten und Zentralafrika, hier werden Zahlen bis zu 25 Prozent der Bevölkerung angenommen.1, 2, 5, 21, 30 Allgemein korreliert das Infektionsrisiko mit dem sozioökonomischen Status der jeweiligen Bevölkerungsgruppe.2

3.1.1 Hervorstechende Prävalenzraten in Ägypten und Zentralafrika

Stellt man weltweite Prävalenzvergleiche an, so fällt auf, dass in weiten Gebieten Ägyptens und Zentralafrikas stark abweichende Prävalenzzahlen dokumentiert sind.1

Während sich die weltweiten Infektionsrate zwischen 0,5 und zwei Prozent einpendelt, stechen diese Gebiete mit Zahlen bis zu 25 Prozent wesentlich hervor. Auffallend häufig findet man den Genotyp 4.1, 2, 5, 21, 30

Die Ursache dieser massiven Verbreitung wird in der frühen Vergangenheit gesucht und dürfte mit einer Impfaktion gegen Schistosomose in den 1960er bis 1980er Jahren in Verbindung stehen.53, 54

Bis heute wird angenommen, dass im Rahmen der intravenösen Impfaktionen sehr unhygienisch vorgegangen wurde.20, 53

Durch die hohe Durchseuchungsrate in der Bevölkerung kommt es letztlich auch zu überdurchschnittlich häufigen Übertragungen während der Geburt.53

Somit empfiehlt sich in Ägypten in jedem Fall eine sinnvolle Hepatitis-Vorsorge beziehungsweise ein vorsichtiger und hygienischer Umgang vor Ort.1, 20, 53

3.2 Historische Entwicklung der HCV-Infektion

In den 1970er Jahren hat das Team des Department of Transfusion Medicine at the National Institute of Health rund um den Amerikaner Harvey J. Alter erkannt, dass die meisten Fälle von transfusionsbedingter Hepatitis weder Hepatitis A noch Hepatitis B waren. Damit wurde der Begriff „Non-A / Non-B-Hepatitis“ (NANBH) geboren.6, 9, 10, 17, 21, 25, 30

Nach dieser Entdeckung wurden international große Anstrengungen unternommen, den Verursacher zu finden.12

verglichen werden. Dies ist vor allem durch die damals schon recht fortschrittliche Molekulardiagnostik ermöglicht worden. Im gleichen Jahr wurde auch ein erster Nachweistest entwickelt. \[6, 9, 10, 17, 21, 25, 30\]

Die Klage wurde 1998 von einem amerikanischen Berufungsgericht abgewiesen. Die Chiron Corp. besitzt seit 2004 über 100 Patente in über 20 Ländern und hat seitdem viele internationale Konzerne wegen Patentverletzung verklagt. In den folgenden Jahren haben sich viele namhafte Wissenschaftler und Konzerne mehrfach beklagt, dass durch die hohen Patentabgaben, die Forschungsarbeit gegen Hepatitis-C negativ beeinflusst wird. \[6, 9, 10, 17\]

3.3 Umgang mit Hepatitis in Europa

3.4 Meldewesen in Österreich

Seit dem Jahr 1993 zählt Hepatitis C in Österreich zu den meldepflichtigen Erkrankungen. Diese Meldung erfolgt nicht anonymisiert, wie etwa bei HIV. Die rechtliche Grundlage basiert hier auf dem österreichischen Epidemiegesetz §1.1.4

Eine statistische Auswertung der Entwicklung von Hepatitis C ist nur etwa für die letzten 20 Jahre möglich. Zuvor war das Hepatitis-C-Virus nicht bekannt.

Während in Österreich 1965 noch 6.617 Fälle von infektiöser Hepatitis angezeigt wurden, liegen die heutigen Zahlen seit 1990 zwischen 500 bis 1.800 jährlich. Dies dürfte einerseits auf die durchaus greifenden Hygienerichtlinien und die durchgesetzten Präventionsmaßnahmen zurückgehen. Allerdings ist andererseits auch anzumerken, dass die Meldepflicht oftmals nicht beachtet wird und damit von einer gewissen Dunkelziffer auszugehen ist. Laut Aussagen von Dr. Strauss muss von einem generellen underreporting ausgegangen werden.8,32

Die Entwicklung der angezeigten Hepatitis C Infektionen zeigen allgemein ein kontinuierliches Absinken, allerdings auch einen wellenförmigen Verlauf.8,52

Tabelle 1 Angezeigte Fälle von Hepatitis insgesamt und HCV im Detail in Österreich

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Hepatitis insgesamt</th>
<th>davon HCV</th>
<th>in %</th>
<th>bezogen auf 100.000 Bew.</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003</td>
<td>1.742</td>
<td>1.071</td>
<td>61,5%</td>
<td>13,2</td>
</tr>
<tr>
<td>2004</td>
<td>1.744</td>
<td>964</td>
<td>55,3%</td>
<td>11,8</td>
</tr>
<tr>
<td>2005</td>
<td>1.637</td>
<td>894</td>
<td>54,6%</td>
<td>10,9</td>
</tr>
<tr>
<td>2006</td>
<td>1.510</td>
<td>780</td>
<td>51,6%</td>
<td>9,4</td>
</tr>
<tr>
<td>2007</td>
<td>1.813</td>
<td>1.041</td>
<td>57,4%</td>
<td>12,5</td>
</tr>
<tr>
<td>2008</td>
<td>2.017</td>
<td>1.082</td>
<td>53,6%</td>
<td>13,0</td>
</tr>
<tr>
<td>2009</td>
<td>1.658</td>
<td>877</td>
<td>52,9%</td>
<td>10,5</td>
</tr>
<tr>
<td>2010</td>
<td>1.817</td>
<td>957</td>
<td>52,7%</td>
<td>10,8</td>
</tr>
<tr>
<td>2011</td>
<td>566</td>
<td>321</td>
<td>56,7%</td>
<td>3,8</td>
</tr>
</tbody>
</table>
3.5 Hepatitis C – das Virus

Das Hepatitis-C-Virus gehört aufgrund seines molekularbiologischen Aufbaus zu der Gruppe der Flaviviren. Es stellt ein umhülltes RNA-Virus mit einem Durchmesser von etwa 50nm dar und beinhaltet etwa 9600 Nukleotide, diese bilden ein plusstrangiges Genom. Das Virus zeichnet sich durch ein breites Leseraster aus, welches ein Polyprotein codiert.\(^1,2,10,12,17,30\)

Es liegt ein Tropismus zu Hepatozyten und Lymphozyten vor. Dort geschieht auch die Replikation. Reife Viren gelangen in die Blutbahn.\(^11,12\)

Entscheidend ist, dass für HCV keine direkte zytopathische Wirkung nachgewiesen wurde. Für die massive Zerstörung von virusinfizierten Leberzellen dürften sowohl intrazelluläre Prozesse als auch immunologische Prozesse eine Rolle spielen. Dieser Umstand ist letztlich auch für die chronischen Leberschäden verantwortlich.\(^2,30\)

Der Aufbau des Virions ist so gestaltet, dass die einzelnen HCV-Partikel mit einer Lipidmembran umgeben sind, diese erwirbt das Virus von der Wirtszelle. Das Virion besteht weiters aus viraler RNA sowie aus so genannten Strukturproteinen wie Core, E1 und E2. Weitere essentielle Proteine sind p7, das für die Ausschleusung von Bedeutung ist, sowie die Nichtstrukturproteine (NS) 2, 3, 4A, 4B, 5A, 5B.\(^2,30,42\)

Die beiden Genomenden werden von hochstrukturierten RNA-Sequenzen gebildet. Diese werden als nicht translatierte Region (NTR) bezeichnet. Das 5’-NTR Ende besitzt eine Ribosomeneintrittsstelle sowie regulatorische Signale und ist für die Translation des RNA-Genoms verantwortlich.\(^2,18,30\)

Das 3’-NTR Ende ist zwischen den verschiedenen Genotypen hochvariabel und essentiell für die RNA-Replikation. Dadurch dass HCV weder ein 5’cap Ende, noch ein Poly-A 3’Ende besitzt, hebt es sich wesentlich von den klassischen Flaviviren ab.\(^2,12\)

3.5.1 Virale Proteine – Struktur und Funktion

Das Core-Protein ist in der Lage RNA zu binden, während durch Multimerisierung ein Kapsid gebildet wird, welches die plusstrangige RNA verpackt.\(^2,12\)

Für die Bildung des Core-Proteins sind zwei proteolytische Spaltungen notwendig. Wobei zuerst durch Einwirkung einer Signalase das membranständige p23-Core-Protein entsteht. In einem weiteren Schritt wird rasch eine carboxyterminale Gruppe abgespaltet. Nach diesem Schritt entsteht das reife p21-Core-Protein, welches vermutlich die Hauptkomponente des Viruspartikels darstellt.\(^2,12,42\)

3.6 HCV-Genotypen

Es werden sechs Genotypen (Genotyp 1 bis Genotyp 6) unterschieden, diese werden weiter in Subtypen (a, b, ...) differenziert. Bisher wurden etwa 50 Subtypen entdeckt. Die Genotypen weisen Unterschiede in den Aminosäuresequenzen von bis zu 50 Prozent auf.
Durch die hohe Mutationsrate kommt es auch innerhalb eines menschlichen Organismus zur Bildung so genannter Quasispezies. Diese weisen eine Sequenzhomologie von etwa 95 Prozent auf.1, 2, 5, 12, 57

Zu beachten ist, dass die gebildeten HCV-Antikörper so spezifisch sind, so dass sie nur gegen eine Quasispezies protektiv wirken.2, 12, 16, 44, 66

Bei den medizinisch deklarierten Genotypen handelt es sich um Aufspaltungen von Genomstrukturen. Hepatitis-C-Infektionen mit den Genotypen 1-, 2- und 3- sind weltweit verbreitet. Andere Genotypen sind geografisch verstreut. Durch diese Variabilität des Genoms wurde berechnet, dass diese Genotypen sich vor etwa 1.000 bis 2.000 Jahren ausgebildet haben. Die Subtypen dürften wesentlich jünger sein.1, 12

In Österreich und Deutschland sind vor allem Genotyp 1a/b und 3a von besonderer Häufigkeit.19, 35

Tabelle 2: Häufigkeit der HCV-Genotypen in Österreich

<table>
<thead>
<tr>
<th>Genotyp</th>
<th>in Österreich</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a & b</td>
<td>60-65 %</td>
</tr>
<tr>
<td>2</td>
<td>2-5 %</td>
</tr>
<tr>
<td>3</td>
<td>25-30 %</td>
</tr>
<tr>
<td>4</td>
<td>3 %</td>
</tr>
</tbody>
</table>

Der Genotyp 1b ist typisch für Infektionen über Bluttransfusionen. Diese Tatsache spiegelt die Problematik virusbelasteter Blutprodukte vor Einführung einer entsprechenden Testung 1990 wider. Dieser Sachverhalt dürfte auch erklären, warum der Genotyp 1b gegenüber Genotyp 1a und 3a eher rückläufig ist. Typischerweise sind ältere Personen von diesem Genotyp betroffen, wobei von einer Infektion über infundierte Blutprodukte ausgegangen werden muss.1, 2, 26, 32, 44

Die Genotypen 1a und 3a kommen hingegen vermehrt bei intravenös Drogenabhängigen vor. Diese Infektionen nehmen stetig zu. Daher ist gerade in Österreich auf diese Risikogruppe besondere Beachtung zu legen.2, 32, 26, 44, 67

Trotz der teilweise großen Heterogenität des viralen Erbguts haben die Genotypen keine unterschiedliche Pathogenität. Trotzdem ist die Bestimmung des Genotyps für die
Therapieplanung enorm von Bedeutung, da mehr als 80 Prozent der Genotypen 2 und 3 gut auf eine Interferon- und antiviraler Therapie ansprechen.1, 2, 26, 44

Die große genetische Variabilität des Virus hat nicht nur Einfluss auf die Therapie, sondern auch auf die Entwicklung von Vakzinen. Letztlich ist auch die Bildung von Quasispezies sehr stark von dem Grundgenotyp abhängig.1,2,12,18

3.7 Hepatitis C – Übertragungswege

Das Hepatitis-C-Virus wird in aller Regel parenteral durch den direkten Kontakt mit kontaminiertem Material übertragen. Auch in anderen Körperflüssigkeiten wie Speichel, Tränen, Schweiß, Sperma oder Muttermilch kann mittels PCR das Virus nachgewiesen werden, allerdings sind diese Übertragungswege als selten anzugeben.1, 2, 44

In der Vergangenheit war die Gabe von Blut und Blutprodukten, wie Plasma, Gerinnungsfaktoren und Immunglobuline, mit einem hohen Übertragungsrisiko verbunden. Seit der Einführung der breiten Screeninguntersuchungen aller Blutprodukte ist dieses Risiko als außerordentlich gering anzusehen.3, 12, 19, 30

In den so genannten Industrienationen wird heute das Hauptsisko in der Drogenszene gesehen, hier vor allem durch „needle sharing“. Dies bezeichnet die gemeinsame Verwendung von Injektionsmaterialien. Schätzungen gehen von etwa 4,5 Millionen Drogenabhängigen in Europa aus. Die HCV-Prävalenzraten in Stichproben lagen zwischen 15 und 90 Prozent.30, 55

Häufig finden sich hier auch Koinfektionen mit HIV, HBV, HDV und ähnlichen Erregern. Dies kompliziert sämtliche Therapiestrategien gegen die assoziierten Erkrankungen.1, 2, 30

Innerhalb der Europäischen Union wurden Rahmenbedingungen geschaffen, um die HCV-Problematik innerhalb des Drogenmilieus einzudämmen. Hierzu zählen neben Aufklärungsgesprächen, Streetworkern und kostenlosen medizinischen Untersuchungen auch die Verteilung von sterilem Injektionsmaterial.30, 55

Das Risiko einer vertikalen HCV-Infektion liegt in einer Größenordnung von etwa drei bis sieben Prozent bei Müttern ohne zusätzliche Risikofaktoren und ist damit wesentlich seltener
als bei Hepatitis B. Das Robert-Koch-Institut gibt eine Prävalenz von 0,4 Prozent bis 0,75 Prozent an. Eine HCV-Infektion stellt keinen Grund dar, einer HCV-positiven Frau mit Kinderwunsch von einer Schwangerschaft abzuraten.1,5,12

Die Infektion erfolgt in den meisten Fällen perinatal durch den Kontakt zum mütterlichen Blut. Das Stillen wird als unproblematisch angesehen, sofern keine Koinfektionen vorliegen. Eine pränatale Vorsorgeuntersuchung auf HCV ist derzeit nicht vorgesehen. Die derzeitigen Therapeutika sind während der Schwangerschaft absolut kontraindiziert. Erst ab dem zweiten Lebensjahr kann und darf eine Therapie eingeleitet werden, wobei zu beachten ist, dass eine kindliche Infektion häufig nach einigen Jahren folgenlos abheilt.1,12

Bei Nadelstichverletzungen mit HCV-positivem Blut wird das Übertragungsrisiko mit drei bis zehn Prozent beziffert. Hier ist vor allem die Blutmenge ausschlaggebend, so haben Untersuchungen gezeigt, dass ein Stich mit einer Nähnadel ein geringeres Risiko aufweist als mit einer Hohlnadel, es dürfte hier ein ursächlicher Zusammenhang mit der Blutmenge vorliegen.2,58

Eine sofortige Postexpositionsprophylaxe mit Typ-1-Interferon und Ribavirin ist derzeit nicht indiziert. Erst wenn im Verlauf eine akute Infektion festgestellt wird, hat eine Therapie zu erfolgen. Nach wie vor gelten Patienten, die längerfristig über eine Hämodialyse behandelt werden müssen, als Risikopatienten. Generell ist auch heute noch zu beachten, dass in diesem Bereich die Hygienerichtlinien strikt eingehalten werden müssen.1,2,12

3.8 Der Lebenszyklus des HCV im menschlichen Organismus

3.8.1 Das Eindringen in die Wirtszelle

Sobald das Virus in den menschlichen Organismus eingedrungen ist, sucht es sich spezifischen Wirtszellen. Bei HCV liegt ein Tropismus gegenüber Leberzell- und Lymphzellen vor. Damit das Virus seine Zielzelle findet, stehen ihm die viralen Oberflächenglykoproteine E1 und E2 als Virusrezeptoren zur Verfügung. Diese Strukturen gehen gleich mit mehreren Oberflächenmolekülen eine Bindung ein.1,2,12

Eine herausragende Rolle scheint hier der LDL-Rezeptor zu spielen. Die Bindung an diesen Rezeptor erfolgt vermutlich über virusassozierte Lipoproteine. Nachdem LDL-Rezeptoren an jeder stoffwechselbetreibenden Zelle zu finden sind, wäre dies allein aber sehr unspezifisch. So dient dieser Rezeptor wohl nur als reine Bindungsstelle zwischen Wirtszelle und Virus. Für den speziellen Tropismus scheinen andere Zellstrukturen verantwortlich zu sein.2,12
Am Beispiel der Leberzelle sind dies neben CD81, auch der Scavenger-Rezeptor Typ B Klasse 1 (SR-B1), dieser ist eigentlich für den HDL-Transport in die Leberzelle zuständig. Dieser Rezeptor scheint essentiell für die Infektion der Leberzelle zu sein.\(^2\)

Ebenso sind die Proteine Occludin und Claudin-1 essentiell an der Virusbindung beteiligt. Die beiden letztgenannten Proteine sind wichtige Bestandteile der so genannten *tight junctions*. Die *tight junctions* haben die Aufgabe Interzellularräume zwischen Zellen zu verschließen und regeln damit nicht nur den Zellzusammenhalt, sondern vor allem auch den Stoffaustausch. In der Leber haben diese Strukturen eine ganz bestimmte Aufgabe, sie sind für die Trennung des Blutflusses gegen den Gallefluss verantwortlich. Letztlich ist genau diese scharfe Trennung der beiden Substrate für die umfassenden Stoffwechselvorgänge der Leber essentiell.\(^2,30\)

Tabelle 3 Essentielle Wirtsproteine für das Hepatitis-C-Virus

<table>
<thead>
<tr>
<th>Essentiellen Wirtsproteine</th>
</tr>
</thead>
<tbody>
<tr>
<td>CD 81</td>
</tr>
<tr>
<td>SR – B1</td>
</tr>
<tr>
<td>Occludin</td>
</tr>
<tr>
<td>Claudin-1</td>
</tr>
</tbody>
</table>

Der Fusionsmechanismus des Virus ist pH-abhängig und geschieht durch Einwirkung der Endosomen. Hierfür sind die Hüllproteine E1 und E2 als Katalysatoren essentiell. Es folgt eine Fusion zwischen der Membran des Endosoms und des Virus. Damit wird das Kapsid und die virale RNS in das Zytoplasma freigesetzt.\(^2,12\)
3.8.2 Das Virus in der Zelle – Translation und Replikation

Durch diese Eigenschaften haben die Virusproteine nicht nur eine räumlich sehr enge Beziehung, sondern schirmen auch die Replikationszwischenprodukte vor intrazellulären Wächterproteinen ab. Damit hat die Wirtszelle wesentlich schlechtere Chancen eine antivirale Reaktion einzuleiten.\(^2,23,30\)

Diese Genomkopien können fortan für drei Prozesse herangezogen werden:
1) Zur Produktion neuer Polyproteine im Rahmen der Translation.
2) Daraus werden im Rahmen der Replikation neue Minusstrangkopien synthetisiert.
3) Diese agieren mit dem Core Protein und leiten damit die Virusmontage ein.\(^2,12\)

3.8.3 Der Zusammenbau und die Ausschleusung

Innerhalb der Leberzelle wird das Core Protein vorwiegend in der Nähe von lipid droplets aufgefunden. Lipid droplets stellen dabei dynamische Organel len dar, die primär der Lipidspeicherung dienen, aber auch regulatorische Eigenschaften besitzen. Diese spezielle Lokalisation an der Oberfläche von Lipidtröpfchen ist wesentlich für die Bildung und Freisetzung des Virus. Genauso sind die Apolipoproteine B und E sowie das Mikrosomale Transferprotein an der viralen Genese beteiligt.\(^2,16,17,30\)

Durch die Interaktion der viralen RNA und des Core Proteins wird vermutlich die Kapsidbildung eingeleitet. Die lipid droplets halten sich unmittelbar in der Nähe des Endoplasmatischen Retikulums auf. Hier sind auch die Hüllproteine E1 und E2 anzutreffen. Durch diesen räumlichen Zusammenhang ist davon auszugehen, dass hier das HCV-Partikel unter Einfluss des Endoplasmatischen Retikulums umhüllt wird. Die weitere Reifung des
Viruspartikels und schließlich auch die Ausschleusung stehen im engen Zusammenhang mit der VLDL-Synthese.\(^2,6\)

Vermutlich verschafft sich das Virus durch die *lipid droplets* einen Zugang zu der VLDL-Maschinerie. Damit erklärt sich auch die enge Assoziation mit Lipoproteinen. Die Ausschleusung dürfte ebenso über konstitutive Sekretionswege des VLDL passieren.\(^2,12,23\)

Auch außerhalb der Wirtszelle nutzt das Virus Lipoproteine als Hülle und damit als Schutzmantel. Es wird davon ausgegangen, dass pro Tag etwa \(10^{12}\) Vironen produziert werden.\(^2,6\)

Dies führt zu einer eingeschränkten Erkennbarkeit für das Immunsystem sowie zu einer eingeschränkten Angriffsmöglichkeit für Antikörper.\(^2,6\)

3.9 Immunreaktion gegen Hepatitis C

3.9.1 Frühreaktionen des Immunsystems

MHC-Klasse-II-Moleküle sind spezifisch für antigenpräsentierende Zellen, über diese speziellen Rezeptoren werden Antigene artgerecht für T-Zellen präsentiert. Von entscheidender Bedeutung sind Th1-Helfer-Zellen, da diese einerseits Interferon γ (IFNγ) und Tumornekrosefaktor-α (TNFα) synthetisieren, andererseits die Proliferation von

3.10 Möglicherkeiten des Hepatitis-C-Verlaufs

Ursachen hierfür können fehlerhafte Apoptosemechanismen, mangelnde Antigenprozessierung oder niedrige T-Zellzahlen sein. Scheinbar kann das Hepatitis-C-Virus auch die Reifung und Aktivierung von dentritischen Zellen stören. Dieser Umstand führt zu einer abgeschwächten Aktivierung von CD4+ T-Zellen. Im Rahmen der Chronifizierung sind besonders hohe Zahlen von Antikörpern gegen das Core-Protein auffallend.2,17,30

Eine langjährige Hypothese geht davon aus, dass die virale Persistenz durch die hohe Variabilität des Virusgenoms gegeben ist. Durch diese hohe Variabilität kommt es zur Entwicklung von Quasispezies direkt im Träger. So wird angenommen, dass sich im Laufe der chronischen Infektion neu auftauchende Virusvarianten entwickeln. Über diesen Mechanismus erreicht das Virus, dass es sich den hoch spezialisierten B- und T- Zellen immer wieder entziehen kann. Aufgrund dieser Variabilität ist es auch möglich sich nach einer ausgeheilten Hepatitis-C-Infektion neu aufzutauchen und den gleichen Genotyp oder einen anderen Genotyp zu infizieren.1,2,30,44

Besonders gefährlich sind in diesem Zusammenhang Koinfektionen mit HIV.1,2,30,32

Noch immer unklar ist die Rolle, die das Immunsystems bei überschießenden Leberschäden spielt.5,21,12,23

3.11 Besondere Eigenschaften des Hepatitis-C-Virus

Eine besonders problematische Eigenschaft des Virus ist seine Persistenz. Nur in etwa 20 bis 30 Prozent der Infektionen kann das Virus spontan eliminiert werden. Aus welchen Gründen das Virus den hochspezifischen Mechanismen des Immunsystems und seiner Raffinessen entkommt, ist bis heute nicht vollständig erklärbar. Weder im Tierversuch noch in Humanstudien konnten bis dato verlässliche Ergebnisse gefunden werden.2,12,30

Es bleiben Hypothesen, die versuchen, die erfolgreiche Persistenz dieses Virus zu erklären. In der chronischen Phase der Infektion sind auffallend geringe Titer festzustellen sowie geringe Antikörper. Dies spricht für eine geringe Virusreplikation und eine geringe Aktivität des Immunsystems.2,12

Wie schon erwähnt, ist das Virusgenom über das so genannte membraneous web intrazellulär vor Abwehrmechanismen abgeschirmt. Genauso spielt die hohe Mutationsrate eine tragende Rolle dem Immunsystem zu entrinnen. Außerdem wurde entdeckt, dass das Virus eine Interferon α- und β- Hemmung veranlasst. Für diese Hemmung ist NS3 verantwortlich. Dieses führt zur Inaktivierung der Signaltransduktion über proteolytische Spaltung der
beteiligten Zellfaktoren. Über die herabgesetzte intrazelluläre Interferonproduktion verschafft sich das Virus einen entscheidenden zeitlichen Vorteil für die Etablierung seines Genoms in der Wirtszeile.2,30 Außerdem könnte dieser Effekt Auswirkungen auf die T-Zellantwort haben, da bei chronischen Infekten häufig eine verminderte Reaktion der T-Zellen beobachtet wird.2,30 Es liegen auch Hinweise vor, dass das Virus die Zelle selbst schädigt, aber nicht zerstört. Hierfür dürften intrazelluläre Mechanismen verantwortlich sein. In Mausmodellen wurde gezeigt, dass eine dauerhafte Expression des Core Proteins zu einer Steatose führt.2,5,16 Weiter wurde in Zellkulturen nachgewiesen, dass fibrogenetische Zytokine (hier zum Beispiel TGF-β) induziert werden, welche schließlich zu einer Fibrosierung führen. Die andauernde Virusreplikation führt auch zu zahlreichen Membranveränderungen und schließlich zu kontinuierlichem Stress für das Endoplasmatische Retikulum.2,12 Damit dürften die Schäden der Leberzellen durch ein Zusammenspiel von viralen und zellulären Mechanismen sowie immunologischen Faktoren bedingt sein.2,12

3.11.1 Die Onkogenese des Hepatitis-C-Virus

Die Entwicklung eines hepatozellulären Carcinoms ist wesentlich vom Verlauf der HCV-Infektion abhängig. Es entwickelt sich in etwa 80 Prozent der Fälle auf dem Boden einer Zirrhose im Rahmen einer chronischen HCV-Infektion. Die Zirrhose selbst dürfte durch fibrotische Eigenschaften des Virus sowie die ständig erhöhte Zellproliferation der Hepatozyten bedingt sein.5,2,12 Die mangelnden oder fehlenden Apoptosemechanismen bei chronisch Infizierten wirken ebenso in diese Problematik ein.2,12,23
3.12 Prävention

Nachdem es für HCV keine Möglichkeiten der aktiven oder passiven Immunisierung gibt, ist die Expositionsprophylaxe derzeit das Mittel der Wahl.\(^{30}\)

Aus den WHO-Richtlinien (2000) gehen folgende Schwerpunkte hervor:

- Screening aller Blut- und Organspender
- Virusinaktivierung aller aus Blutplasma hergestellten Produkte
- Implementierung und Aufrechterhaltung von Infektionskontrollmaßnahmen
- Korrekte Sterilisierung von Instrumenten
- Beeinflussung von Risikoverhalten\(^1\)

Allgemein gilt die Einhaltung grundlegender Hygienemaßnahmen als essentiell. Diese Maßnahmen betreffen neben den HCV-positiven Trägern auch das gesamte Umfeld und vor allem sämtliches Gesundheitspersonal.\(^{30,}\)

Als wichtigste Präventionsmaßnahme sieht die moderne Medizin die genaue Untersuchung von Blut und Blutprodukten. Hier steht die Testung des Anti-HCV beziehungsweise der HCV-RNA im Vordergrund.\(^{30}\)

In Österreich konnten von 1.612.264 getesteten Blutspenden in vier Fällen eine HCV-Infektion im direkten Nachweis mittels PCR festgestellt werden.\(^{1,3,8,26}\)

Die Wahrscheinlichkeit, dass Spenden, die als HCV-negativ getestet werden, dennoch infektiös sind, wird als enorm unwahrscheinlich angenommen. So wird in Deutschland das Restrisiko einer Infektion mit getesteten Blutprodukten mit zirka 1:1.000.000 angegeben.\(^3\)

Aufgrund spezieller Virusinaktivierungsverfahren gelten Plasmaderivate als virussicher.\(^1\)

Das Hepatitis-C-Virus zeigt sich instabil gegenüber Hitzeeinwirkung, es kann durch Pasteurisierung oder feuchte Hitzebehandlung zerstört werden. Diese Inaktivierung ist allerdings nur an Modellviren nachgewiesen. Eine Erhitzung von Blutprodukten würde schließlich auch zu einer Zerstörung oder Veränderung anderer essentieller Blutbestandteile führen und ist somit für eine Bereinigung nicht anzuwenden.\(^2,16,17,30\)

Aus globaler Sicht ist vor allem die nosokomiale Übertragung des HCV unbedingt einzudämmen. Jede Gabe von Blutprodukten sollte nur nach strenger Indikationsstellung durchgeführt werden.\(^1,2,30\)

Die genaue Definition von Risikogruppen und die Verhinderung von riskantem Verhalten ist ebenso ein wichtiger Bestandteil der Präventionsmaßnahmen. Neben der Einhaltung von
Hygienestandards, vor allem bei der intravenösen Applikation von Suchtgiften, gilt es unbedingt den Kreis von intravenös Drogenabhängigen zu verkleinern. Diese Maßnahme würde international zu einer beträchtlichen Reduktion der HCV-Neuinfektionen führen.1, 2, 3, 30

3.13 Der Umgang mit Blut und Blutprodukten in der Medizin

3.13.1 Blutspenderichtlinien und Gesetze in Österreich

In Österreich ist das gesamte Blutspendewesen gesetzlich geregelt. So gibt es in Österreich einerseits das Blutsicherheitsgesetz BSG (1999 mit der aktuellen Novelle 2009) sowie die Hämovigilanz-Verordnung HäVo(2007).4, 13, 14, 26

Das Blutsicherheitsgesetz regelt den gesamten Ablauf der Spende, die Aufklärung und die weitere Testung und Verwendung des Blutes. So wird im §1 (2) festgehalten, dass „...bei der Gewinnung und Testung von menschlichem Blut (....) der Stand der medizinischen Wissenschaft einzuhalten (....)“ ist.15

Auch ist es laut §8 BSG untersagt für Vollblutspenden „dem Spender einen Gewinn zukommen zu lassen...“15

Die vorgeschriebene Testung der jeweiligen Blutproben ist ebenso im BSG §28b festgesetzt und ist europäisch über die Richtlinie 2002/98/EG geregelt. Damit ist in allen Ländern der Europäischen Union eine Testung auf HBV, HCV und HIV vorgeschrieben.27

Die HäVo befasst sich mit dem Prozedere bei Zwischenfällen. Hierunter fallen sowohl der Spender als auch der Empfänger. Hierfür wurde 2003 ein so genanntes Hämovigilanzregister geschaffen, das über die Vergiftungsinformationszentrale stets zu informieren ist, wenn es zu Zwischenfällen kommt. Unter diese Meldepflicht fallen transfusionsassozierte Infektionen wie zum Beispiel bakterielle oder virale Kontamination.26, 27

3.14 Labortestmethoden für Hepatitis C in der Übersicht

Im Jahr 1989 wurde das Hepatitis-C-Virus mittels molekularbiologischen Methoden identifiziert. Allerdings konnte man das Virus erst im Jahr 2005 in Zellkulturen anzüchten und seine partikuläre Einheit darstellen.59

Heutzutage gibt es verschiedene Standardverfahren, um eine Hepatitis-C-Infektion nachzuweisen. Zu den gängigsten gehören die indirekte Methode durch den Nachweis spezifischer Antikörper (Anti-HCV), der rekombinante Immunoblot Assay (RIBA) und der
direkte HCV-Genomnachweis mittels PCR. Bei der Austestung des Hepatitis-C-Virus spielt neben dem Aufspüren einer Infektion auch die Charakterisierung (Genotyp) sowie die Quantifizierung (virus load) eine tragende Rolle. Letztlich stellen diese Ergebnisse eine Schlüsselrolle für den zukünftigen Behandlungsablauf dar.2, 16, 17, 30, 39, 45

Zu beachten ist, dass damit nur die Virusinfektion festgestellt werden kann, aber keine Aussage getroffen wird, ob sich eine klinisch manifestierbare Symptomatik entwickelt. Um eine klinische Manifestation zu diagnostizieren, bedarf es zusätzlich einer genauen klinischen Abklärung.

In Folge sollen die wichtigsten standardisierten Testmethoden vorgestellt und zwei unterschiedliche ELISA-Tests verglichen werden.

3.15 Laborchemische Verfahren zum Antikörpernachweis

Grundsätzlich können Proben für einen Anti-HCV oder RIBA-Test in Form von Plasma (EDTA, Heparin, Citrat) oder Serum untersucht werden. Bei Raumtemperatur sind diese Proben bis zu sieben Tage ohne wesentliche Veränderungen stabil, bei einer Lagertemperatur zwischen 2° bis 8°C bis zu vier Wochen, und bei unter –20°C können Proben bis zu zwei Jahren aufbewahrt werden. Zu beachten ist allerdings, dass wiederholtes Auftauen zu einem Absinken der Antikörperkonzentrationen in den Proben führen kann.59

Alle Proben, die für die vorliegende Arbeit gemessen wurden, entstammen dem Tiefkühlarhiv des Institutes für Hygiene, Mikrobiologie und Umweltmedizin der Medizinischen Universität Graz. Dieses Tiefkühlarhiv lagert alle eingegangenen Proben bei -20°C für mindestens 30 Monate.

Die beiden Anti-HCV-Tests ArchitectTM der Firma Abbott und der VIDAS® Anti-HCV der Firma bioMerieux werden in dem Kapitel Material und Methoden vorgestellt und gegenübergestellt.
3.15.1 Rekombinante Immunoblot Assays

- Streptavidin-Kontrolle
- eine Bande mit 3+ Positivkontrolle (strong positive), welches ein antihumanes Immunglobulin darstellt, dieses dient als Kontrollbande für die Probenzugabe.
- eine Bande mit 1+ Positivkontrolle (moderate positive), welche spezifisch für humanes IgG ist.
- eine +/- Cut-off-Bande (weak positive) für humanes IgG.

Vorteil ist, dass es kürzer dauert und nach dem Einsetzen kaum mehr manuelle Eingriffe benötigt.38

3.15.1.1 Ablesen und Auswertung der Teststreifen
Zunächst müssen die Ergebnisse der stets durchzuführenden Positiv- beziehungsweise Negativkontrollen abgelesen werden. Bei den Positivkontrollen müssen die Antigenbanden für C1, C2, NS3 und NS4 auf jeden Fall eine deutliche Farbreaktion zeigen, die Banden für E2 und NS5 können hingegen negativ sein. Erst wenn diese Ergebnisse korrekt sind, dürfen die Teststreifen mit realen Patientenproben interpretiert werden.38
Für ein präzises Ablesen müssen alle Teststreifen getrennt voneinander beurteilt werden. Zu beachten ist, dass nur vollständige Teststreifen ausgewertet werden dürfen. Zur leichteren Interpretation liegt auch eine Leseschablone dem Kit bei. Auf jeden Fall muss die Streptovidin-Bande negativ sein, andernfalls könnte dies auf eine Kreuzreaktion hinweisen.38

3.15.1.2 Interpretation von Testergebnissen
Laut Hersteller ist ein Teststreifen als NEGATIV zu beurteilen, wenn:38
- alle HCV-Antigenbanden negativ zu beurteilen sind.
- nur eine einzige Bande eine geringe Reaktion aufweist, es sei denn, es handelt sich um die NS3-Bande.
Ein Teststreifen ist als POSITIV zu beurteilen, wenn:
- mindestens zwei Banden zumindest eine geringe Reaktion aufweisen.
Ein Teststreifen gilt als FRAGLICH, wenn:
- nur eine HCV-Antigenbande zumindest eine Reaktion von 1+ aufweist.
- eine Reaktion der NS3-Bande vorliegt und alle anderen HCV-Banden negativ sind.
Eine alleinig positive NS3-Bande kann durch eine Serokonversion zustande kommen und wird daher als fraglich eingestuft. In solchen Fällen ist die Patientenprobe durch ein anderes Testverfahren zu überprüfen. Andererseits sollte eine erneute Abnahme von Patientenblut nach wenigen Wochen erfolgen und die Testreihe wiederholt werden.38

3.15.2 Grenzen der Anti-HCV-Diagnostik
Bei jeder Anti-HCV-Austestung muss bedacht werden, dass das „diagnostische Fenster“ bei Patientenproben zwischen vier bis zehn Wochen betragen kann.2,37,12

Zusammenfassend ist anzumerken, dass bei dringendem klinischem Verdacht (Transaminasen Anstieg und sonstigen klinischen Zeichen) die Testreihe mit frischem Probenmaterial unbedingt im Abstand von wenigen Wochen zu wiederholen ist.

3.16 Suche und Untersuchung auf HCV-RNA

Durch Entwicklung der PCR und anderer Nachweisverfahren wurde es möglich, kleinste Mengen von Nukleinsäuren zu amplifizieren. Diese Techniken finden in der modernen Forschung und der Medizin breiten Einsatz. So auch als Nachweisverfahren für verschiedene Infektionskrankheiten.2, 42, 43, 44

Bei HCV findet diese Technologie Einsatz zum Nachweis des Virus sowie zur Bestimmung von Viruslast und Genotypisierung.

3.16.1 Der Nachweis des Hepatitis-Virus über RNA-Suche

Durch die Suche nach Virus-RNA kann das diagnostische Fenster weiter verkleinert werden. So kann die Virus-RNA zu Zeiten nachgewiesen werden, an denen die Antikörperstests noch negativ sind. Diese Nachweismethode erweist sich auch als vorteilhaft bei besonderen Patientenkollektiven, die aufgrund systemischer Erkrankungen oder Störungen keine oder nur geringe Antikörperaktivität aufweisen. Letztlich sind auch alle Blutprodukte vor deren Weiterverarbeitung durch eine solche Testreihe zu untersuchen.1, 2, 42, 43, 44

3.16.2 Der Nachweis von HCV-RNA in Patientenproben

Um die HCV-RNA in Patientenproben nachweisen zu können, wird bevorzugt die 5’-nicht-codierende Region amplifiziert. Da das Hepatitis-C-Virus in den meisten Fällen in vergleichsweise geringen Konzentrationen vorliegt, muss auf PCR-Verfahren, Target-Mediated Amplification+ (TMA®) oder eine Signalverstärkung durch branched DNA signal amplification zurückgegriffen werden.2
3.16.2.1 Polymerase-Chain-Reaction – PCR

3.16.2.2 branched-DNA-Methode
Dies ist ein Signal-Amplifikationstest, welcher spezielle DNA-Abschnitte beinhaltet. Diese gehen nur dann eine Verbindung ein, wenn eine Zielstruktur wie HCV beinhaltet ist. Eine reverse-Transkription ist nicht notwendig.70 Der Vorteil an dieser Methode ist die geringe Kontaminationsgefahr, da nur ein Signal, aber nicht das Produkt amplifiziert wird. An das vorliegende HCV-Genom lagern sich spezifische Sonden, die Arme mit Signalamplifikatoren tragen. Die Sensitivität ist mit <600 IU/ml angegeben.2,43

3.16.2.3 Target-mediated Amplification – TMA®
Dieses Verfahren benötigt zwei Enzyme, eine RNA-Polymerase und eine reverse-Transkriptase. Der Vorgang ist isothermal in einem konstant warmen Wasserbad oder einem Inkubator getriggert. 69 Hiermit kann sowohl auf DNA oder RNA getestet werden. Im Testverlauf entstehen ausschließlich RNA-Transkripte. Dadurch, dass keine Waschvorgänge notwendig sind, ist die Kontaminationsgefahr gering. Der ganze Ablauf dauert etwa 15 bis 60 Minuten und ist damit vergleichsweise rasch. Die Sensitivität wird mit 5 IU/ml angegeben. Diese Methode ist derzeit nur für qualitative Messungen anwendbar.2

3.16.3 Viruslast
Die Viruslast wird international in IU/ml oder IE/ml angegeben. Beide Einheitenbezeichnungen dürfen synonym verwendet werden. Dies gewährleistet eine gute Vergleichbarkeit der verschiedenen Testsysteme und liefert gleichzeitig auch Aussagen über die Aktivität des Virus. Werte von über 600.000 IU/ml sprechen für eine hohe Virämie. Die
Ermittlung der HCV-Konzentration erfolgt mit einer Realtime-PCR oder einem branched-chain-DNA-Test, da diese Bereiche von >10^7 IU/ml erfassen können. Mit diesen Methoden lassen sich zwei bis vier Wochen vor der Serokonversion meist massive Virämien nachweisen. Danach fallen die Werte in der Regel massiv ab, bleiben aber neben den Antikörpern nachweisbar.\(^2,43,44\)

3.16.4 Bestimmung des HCV-Genotyps

Derzeit sind sechs verschiedene Genotypen zu unterscheiden. Im Jahr 2005 wurde beschlossen, dass die Einteilung auf der Ähnlichkeit der Nukleinsäuresequenz in der NS5-Region zu basieren hat. Sollte ein Hepatitis-C-Virus weniger als 72 Prozent mit der NS5-Region anderer Genotypen übereinstimmen, so darf von einem neuen Genotyp gesprochen werden. Eine Ähnlichkeit von 75 bis 86 Prozent spricht für einen neuen Subtyp.\(^43,44,45\)

Nachdem für Hepatitis C die Therapie dem vorliegendem Genotypen angepasst werden muss, ist die Bestimmung desselben sehr entscheidend für den Verlauf der Erkrankung. Um den Genotyp zu identifizieren, wird ein ca. 230bp langer Bereich der 5’UTR-(nicht translatierten) Region des Virus sequenziert.\(^2,43,44,45\)

3.17 Allgemeine Interpretation von Testergebnissen

Bei der Interpretation von Testergebnissen muss bei der Anti-HCV-Testung sowohl die Möglichkeit von falsch negativen als auch von falsch positiven Ergebnissen berücksichtigt werden.

Ein negatives Testergebnis schließt eine frische Infektion vor allem bei immunsupprimierten Patienten nicht aus. In diesem Fall sollten HCV-RNA-Tests einen präziseren Aufschluss geben beziehungsweise die Testreihe nach kurzer Zeit mit frischem Probenmaterial wiederholt werden. In der folgenden Tabelle werden die Interpretationsmöglichkeiten abhängig vom jeweiligen Testergebnis zusammengefasst.\(^37\)
Tabelle 4 Ergebnisse von HCV-Testung und deren Interpretation

<table>
<thead>
<tr>
<th>ELISA</th>
<th>RIBA</th>
<th>PCR</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>positiv</td>
<td>positiv oder</td>
<td>positiv</td>
<td>aktive oder chronische HCV-Infektion</td>
</tr>
<tr>
<td></td>
<td>intermediate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>positiv</td>
<td>positiv</td>
<td>negativ</td>
<td>ausgeheilte HCV, sofern PCR bei weiterer Testung negativ bleibt</td>
</tr>
<tr>
<td>positiv</td>
<td>negativ, intermediate</td>
<td>negativ</td>
<td>ausgeheilte HCV oder falsch positive Ergebnisse bei ELISA</td>
</tr>
<tr>
<td></td>
<td>or</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>not performed</td>
<td></td>
<td></td>
</tr>
<tr>
<td>positiv</td>
<td>negativ</td>
<td>negativ</td>
<td>falsch positives Ergebnis der ELISA</td>
</tr>
<tr>
<td>negativ</td>
<td>negativ oder</td>
<td>negativ</td>
<td>keine HCV-Infektion oder Testung zu früh nach Infektion (7 bis 8 Wochen)</td>
</tr>
<tr>
<td></td>
<td>nicht indiziert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
3.18 Zusammenschau internationaler Qualitätsmanagementsysteme für Laboratorien

Die Steigerung der Qualitätsstandards ist nicht nur ein Nachweis für die Zuverlässigkeit und Sicherheit eines Labors, sondern ist heutzutage auch national und international zu einer wichtigen Geschäftsstrategie geworden. So werden immer öfter große öffentliche Aufträge vorwiegend an Labors erteilt, die sich über Qualitätsnormen akkreditiert haben.

Diese Normen regeln nicht nur den Ablauf der Testungen, sondern sind auch Maßstäbe für das Labormanagement, die Dokumentation und die Sicherheitseinrichtungen. Damit wird nicht nur ein Qualitätsstandard garantiert, auch die Vergleichbarkeit der einzelnen Labors wird einfacher.

3.18.1 Die Entstehung von Qualitätsnormen.

ausgezeichnete Labs, die mit einem normierten Managementsystem arbeiten, nicht nur fachkundig sind, sondern auch standardisierte Ergebnisse liefern.46

\subsection*{3.18.2 Zertifizierung versus Akkreditierung}

Zwischen diesen beiden Begriffen existiert eine klare Trennung. „Die Zertifizierung durch eine Stelle oder Organisation per ISO ist ein Verfahren, in dem ein „unparteiischer“ Dritter bestätigt, dass ein Erzeugnis, ein Verfahren oder eine Dienstleistung vorgeschriebene Anforderungen erfüllt“47. Dies gilt zum Beispiel für die ISO 9001.

Die Akkreditierungsstelle in Österreich ist das BM für Wirtschaft, Familie und Jugend, die ausüбende Stelle ist die "Akkreditierung Austria" und die gesetzliche Regelung bildet das Akkreditierungsgesetz. Im Rahmen des Akkreditierungsverfahrens wird unter anderem die fachliche Qualität der Laborarbeit überprüft und bestätigt. Dies darf nur durch die "Akkreditierung Austria" passieren. Diese Stelle ist über Abkommen mit anderen internationalen Stellen wie ILAC, EA und anderen vernetzt48. Hierbei wird das Qualitätsmanagement des Labors überprüft und dessen Funktion bestätigt. Außerdem handelt es sich um eine formelle Anerkennung, dass es sich um ein fachlich auf hohem Niveau arbeitendes Labor handelt. In Deutschland wird diese Akkreditierung durch die DAkkS gewährleistet. Hier gilt als Mindestanforderung die Richtlinie der Bundesärztekammer zur Qualitätssicherung labormedizinischer Untersuchungen, kurz Rili-BÄK.47
4 Material & Methodik

4.1 Ein- und Ausschlusskriterien

4.1.1 Ethikkommissionsvotum

4.2 Probenvorbereitung

4.3 Beschreibung des Abbots Architect™ Anti-HCV-Test

Der Architect™ Anti-HCV-Assay der Firma Abbott stellt einen Zwei-Schritt Chemilumineszenz-Mikropartikelimmunoassay (CMIA) zum qualitativen Nachweis von Antikörpern gegen HCV dar.40

Laut Angaben von Abbott Diagnostics Division weist der vorliegende Test eine Spezifität von 99,60 Prozent und eine Sensitivität von 99,10 Prozent auf.40

Chemilumineszenz-Mikropartikelimmunoassays repräsentieren eine Variante von Enzymimmunoassays, deren Prinzip erstmals in den 1970ern Anwendung fand.40

Der Architect™ Anti-HCV-Test dient dem Nachweis von Antikörpern gegen Struktur- und Nicht-Strukturproteine des HCV-Genoms. Die beiden wesentlichen Bestandteile der dargebotenen Antigene sind HCr43 und c100-3.40

Die HCr43-Proteinstruktur stammt aus Escherichia coli. Ein Teil besteht aus Aminosäurensequenzen des NS3-Proteins, wobei die Aminosäuren 1192 bis 1457 hierfür hergenommen werden. Diese Genomstruktur ist in Flaviviren allgemein sehr ähnlich ausgeprägt. Die andere Region wird durch die Aminosäuren 1 bis 150 repräsentiert, die für das core-Protein codieren. Beide zusammen ergeben das HCr43.40

Das c-100-3-Antigen stellt ein rekombinantes HCV-Protein dar, das in Saccharomyces cerevisiae exprimiert wird. Die wesentlichen Bestandteile entstammen den NS3- und NS4b-Strukturen. Das aus diesen Abschnitten zusammengefügte c100-3-Protein ist ein chimäres Fusionsprotein. Es besteht aus 154 Aminosäuren einer humanen Superoxiddismutase (hSOD), den Aminosäuren 1569 bis 1931 aus dem HCV-Polyprotein und fünf Kopplungsaminosäuren am Carboxylende. Die Teststrukturen HCr43 und c100-3 stehen unter US-Lizenz der Chiron Corporation.40,41

Das Hygieneinstitut verwendet zum Testen den ArchitectTM i2000SR®. In diesem Gerät werden alle benötigen Lösungen und Puffer in kleinen Tanks bereit gehalten und während der Testung automatisch den Proben zugegeben und wieder abgesaugt. Grundsätzlich ist dieses Gerät dafür ausgelegt, verschiedene Nachweisverfahren durchzuführen. Deswegen muss die gewünschte Testung mittels Software eingestellt werden, bevor das Gerät mit Proben beladen wird. Zur Sicherheit kann man die Anforderungen und Probennummern nochmals überprüfen und gegebenenfalls ändern oder abbrechen, bevor die Testung gestartet wird.40,41
4.3.1.1 Testablauf

Im zweiten Schritt erfolgt die Zugabe von acridiniummarkierten Konjugat, welches mit den Anti-HCV-Strukturen eine Bindung eingeht. Das Acridinium N-Sulfyl-Carboxamid wird über Oxidation in einen angeregten Zustand versetzt und folglich als N-Sulfyl-Propylacridon bezeichnet.40,41

Die gemessene RLE des Architect™ Systems ist der Konzentration der Antikörper gegen HCV proportional. Im Gerät ist das Grenzwertsignal der letzten Kalibrierung hinterlegt. Diesem Wert wird die gemessene Probe gegenübergestellt. Sollte die Probe diesem Wert entsprechen oder größer sein, so gilt die Probe als reaktiv für Anti-HCV. Die Messdaten werden ausgedruckt und im System gespeichert. Da dieser interne Speicher nur begrenzte Kapazitäten (etwa 50.000 Einzelergebnisse) aufnehmen kann, ist eine regelmäßige Überspielung von Daten auf andere Datenmedien notwendig.40,41
4.3.1.2 Auswertung und Interpretation von Testergebnissen

\[\text{Mittelwert der relativen Lichteinheiten von Kalibrator 1} \times 0,074. \]

Der S/CO-Wert ergibt sich damit aus:

\[\frac{\text{RLE-Probe}}{\text{RLE Grenzwert}}. \]

Gemäß den Angaben von Abbott gilt für die Probenergebnisse folgende Interpretation:

Tabelle 5 Interpretation des Testergebnisses von Abbott ARCHICTECT™ Anti-HCV

<table>
<thead>
<tr>
<th>S/CO-Wert:</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,00</td>
<td>NEGATIV</td>
</tr>
<tr>
<td>≥ 1,00</td>
<td>POSITIV</td>
</tr>
</tbody>
</table>

Alle Proben mit Werten <1,00 gelten als nicht reaktiv und müssen laut Bedienungsanleitung nicht weiter getestet werden. Das manuelle Erstellen einer „Grauzone“ ist allerdings für den Benutzer von Seiten des Geräts möglich. Sofern die Proben Werte >1,00 aufweisen, gelten diese als reaktiv. Nach den Angaben von Abbott sollen diese einer weiteren Doppeltestung unterzogen werden. Wenn in diesem Testdurchgang beide Proben <1,00 fallen, gilt der Test als nicht Anti-HCV reaktiv. Sofern in dieser Wiederholung zumindest eine Probe wiederum >1,00 liegt, gilt der Test laut Abbott-Kriterien als Anti-HCV reaktiv.

4.3.1.3 Hinweise und eventuelle Fehlerquellen

4.4 Beschreibung des VIDAS® Anti-HCV-Tests

Für jede neue Testcharge muss mittels mitgeliefertem Standard eine Kalibrierung durchgeführt werden. Dazu wird der Barcode auf dem Standard „S1“ eingescannt und ein

4.4.1.1 Testablauf

Nachdem in den Reagenzriegel eine Probenmenge von 100µl manuell pipettiert wird, läuft die gesamte Testung vollautomatisch.39

Zunächst wird die Probe verdünnt und in Folge mehrfach im SPR® aspiriert und wieder abgegeben. Sofern sich Antikörper gegen HCV in der Probe befinden, binden diese an die angebotenen Antigenstrukturen, welche auf der Festphase verankert sind. Strukturen, die keine eindeutige Bindung eingehen, werden durch mehrmalige Waschschritte eliminiert.

Im zweiten Schritt werden rekombinante monoklonale antihumane IgG-Maus-Antikörper in Fab'-Form, welche an alkalische Phosphatasen (Hefen) gebunden sind, mittels SPR® aspiriert und wieder abgegeben. Diese gehen eine Bindung mit den humanen Antikörpern ein, die zuvor eine Bindung mit der Festphase eingegangen sind. Damit auch hier keine Störfaktoren den weiteren Ablauf beeinflussen, folgen wiederum weitere Waschschritte.

Im letzten Schritt aspiriert SPR® das Substrat 4-Methyl-umbelliferon-Phosphat, dieses wird enzymatisch zu dem fluoreszierenden 4-Methyl-umbelliferon umgebaut. Diese Fluoreszenzeigenschaft wird nun bei 450nm gemessen. In der ersten Messung wird nur die Küvette mit dem Substrat gemessen, erst die zweite Messung bedient sich der SPR®. Diese beiden Messungen werden gegenübergestellt. Aus deren Differenz ergibt sich ein Relative Fluorescence Value (RFV).39

Die Intensität der Fluoreszenz ist der Menge der vorhandenen Antikörper proportional. Dieses Messergebnis wird dem gespeicherten Standard „S1“ gegenübergestellt und in Zahlenwerten ausgegeben.39

4.4.1.2 Auswertung und Interpretation von Testergebnissen

Nachdem beide Fluoreszenzmessungen durchgeführt wurden, berechnet das Gerät automatisch den Testwert. Hierfür werden wiederum die Relative Fluorescence Values herangezogen:

\[
\text{Testwert} = \frac{\text{RFV Patient}}{\text{RFV Standard}}
\]

Auf dem Auswertungsbogen werden sowohl der Testwert in Zahlen als auch die Interpretation ausgegeben. Der Hersteller gibt die Interpretation, wie folgt, vor:

Tabelle 6 Interpretation des Testwertes des VIDAS® Anti-HCV Test

<table>
<thead>
<tr>
<th>Testwert in IU:</th>
<th>Interpretation</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 1,00</td>
<td>NEGATIV</td>
</tr>
<tr>
<td>\geq 1,00</td>
<td>POSITIV</td>
</tr>
</tbody>
</table>

Auch bei diesem Test sind alle positiven Ergebnisse unbedingt zu wiederholen oder durch einen anderen Test zu überprüfen. Ein negatives schließt eine Hepatitis C Infektion nicht eindeutig aus. Daher sollte bei weiterem klinischem Verdacht unbedingt eine weitere Untersuchung stattfinden.

4.4.1.3 Hinweise und eventuelle Fehlerquellen

Proben mit sichtbaren hämolytischen, lipämischen oder ikterischen Charakter sollten nicht verwendet werden. Es wird in dem Beipacktext auch darauf hingewiesen, dass verarbeitete Testbestandteile sowohl humanen als auch tierischen Ursprungs und damit die Testkits an sich als potentiell infektiös anzusehen sind. Im Rahmen der Produktbeschreibung wird darauf hingewiesen, dass der Test grundsätzlich mit einer großen Anzahl von anderen Strukturen Kreuzreaktionen aufweisen kann. Besonders HSV, EBV, VZV, CMV, LYME, HIV, HAV, HBV seien hier hervorgehoben.
4.5 Statistische Methoden

Für die Auswertung wurde einerseits das Tabellenkalkulationsprogramm Microsoft™ Excel® und andererseits das Statistikprogramm SPSS® herangezogen.

4.6 Die Variabilitätskonstanten Inter- und Intra-Assay

Diese Testmodalitäten dienen der Vergleichbarkeit eines Immunoassays in Bezug auf Wiederholbarkeit und Präzision.61

4.6.1 Intra-Assay

Der Intra-Assay dient als Validierungsmethode, um Schwankungen innerhalb einer Testreihe zu beurteilen.61
In der vorliegenden Arbeit wurden drei Testseren herangezogen, die in der vorhergehenden Messung als „LOW“, „MEDIUM“ bzw. „HIGH“ eingestuft wurden.
Diese sind, wie folgt, definiert:

- **LOW:** Ergebnis deutlich unter 1, PCR negativ
- **MEDIUM:** Ergebnis deutlich über 1, aber einstellig, PCR positiv
- **HIGH:** massiv erhöhter Testwert, zweistellig, PCR positiv

4.6.2 Inter-Assay

Diese Methode wird herangezogen, um eine (oder mehrere) Testseren an mehreren Tagen hintereinander zu messen.61
Bei der vorliegenden Testreihe wurde eine PCR-negative Probe herangezogen und über fünf Tage hintereinander gemessen. Hierfür wurde größte Sorgfalt auf die Verarbeitung und Lagerung des Serums zwischen den Testungen gelegt.

4.6.3 Schwankungsbereiche, Fehlerquellen bei Inter- bzw. Intra-Assay Messungen

Die gemessenen Ergebnisse sollten in folgenden Bereichen liegen:61

- **Intra-Assay:** Abweichungen der Messergebnisse <10%
- **Inter-Assay:** Abweichungen der Messergebnisse <15%

4.7 Die Auswertung mittels Passing-Bablok-Regression

Um die Übereinstimmung der Messmethoden beurteilen zu können, wurde als statistisches Verfahren die Passing-Bablok-Regression (PBR) verwendet. Diese testet die Übereinstimmung der Messung zweier unterschiedlicher Verfahren.

Passing-Bablok ist ein lineares Regressionsverfahren, das „keine besonderen Annahmen für die Verteilung der Stichprobe und der Messproben voraussetzt“.

Eine reine Berechnung der Standardabweichung ist deshalb nicht zu empfehlen, da Ausreißer erkannt und eliminiert werden müssen. Damit kann eine „ungünstige Verteilung der Proben innerhalb des Messbereichs zu Verfälschungen führen.“

Die Steigung der Regressionsgeraden und die Schätzer für den Achsenabschnitt werden über die Berechnung des Medians der Steigungsdreiecke aller möglichen Messpaare ermittelt. Anschließend wird durch zwei Hypothesentests die Gleichheit der Messungen beider Messverfahren überprüft. Sofern die Nullhypothese beider Tests nicht verworfen wird, kann ein Rückschluss auf die Messungen beider Methoden geschlossen werden.

Diese Methode kann nicht als verteilungsfrei bezeichnet werden, allerdings konnte kein praktisch relevanter Einfluss der Verteilung der Messfehler als auch der Probenwerte innerhalb des Messbereiches beobachtet werden.

Angenommen es wird die Hypothese B=1 mittels Passing-Bablok geprüft.
„Der Probenumfang ist eng verknüpft mit der Power des zu benutzenden Tests. Die Power bezeichnet die Wahrscheinlichkeit, mit der sich eine Signifikanz ergibt, wenn B≠1 gilt. Sie hängt vom (unbekannten) Typ der Messfehler Verteilung ab und ist umso größer, je

- größer der Messbereich ist,
- gleichmäßiger die Probenverteilung über den Messbereich ist,
- größer die Präzision beider Messmethoden ist,
- mehr B von 1 abweicht,
- größer der Probenumfang n ist.“ 22

Zu beachten ist, dass ein signifikantes Testergebnis nicht unbedingt ein relevantes Ergebnis bedeutet und umgekehrt. Sofern n sehr groß ist, können unbedeutende Abweichungen signifikant werden. Ist hingegen n zu klein, werden relevante Abweichungen kein signifikantes Ergebnis liefern.22

4.8 Die ISO-Normenreihe 9000#

4.8.1 Die Übersicht über die EN ISO 9001

4.8.2 Allgemeine Anforderungen der ISO 9001

- Sämtliche Prozesse des QM sind für alle Bereiche einer Organisation einzurichten.
- Festlegen von Methoden und Kriterien, um den Ablauf dieser QM-Prozesse sicherzustellen.
- Überprüfung der notwendigen Ressourcen, um Prozesse zu überwachen.
- Prozessüberwachung, evtl. Messung und Analyse des Prozessablaufs.
- Maßnahmen erstellen, um geplante Ergebnisse zu erreichen oder Prozesse zu verbessern.
- Sämtliche Prozesse und Kontrollmechanismen müssen den Gegebenheiten der ISO-Norm entsprechen und sind im individuellen Handbuch festzulegen.

4.8.3 Dokumentationsanforderungen unter ISO 9001

Die Dokumentation und schriftliche Festsetzung eines Qualitätsmanagements und dessen umfassende Erläuterung ist der wesentliche Schlüssel der ISO 9001. So sind schriftlich festzuhalten:
- Qualitätspolitik und Ziele
- QM- Handbuch
- Dokumentierte Verfahren, die innerhalb des Unternehmens als wesentlich erachtet werden
- Sämtliche Dokumente, die der Sicherstellung von Planungen, Durchführung und Lenkung firmenspezifischer Prozesse dienen.

4.8.4 Aufgaben der firmeninternen Leitung unter ISO 9001

Je nach Größe der Firma kann ein eigener Qualitätsmanager ernannt werden, der fortwährend in engem Kontakt mit den Kunden, den Mitarbeitern und der Leitung steht. Die Aufgaben dieses Ressorts sind die Überwachung, die Weiterentwicklung und die Fehleranalyse des QM-Systems.

4.8.5 Personelle Ressourcen unter ISO 9001

Das eingesetzte Personal muss über entsprechende Ausbildungen und Berechtigungen verfügen, um die geforderten Prozesse ausführen zu dürfen. Dies ist von Seiten der Leitung und des QM sicherzustellen und zu überprüfen. Die zertifizierte Organisation hat für regelmäßige Schulungen und Fortbildungen zu sorgen, gerade dann, wenn sich im
Prozessablauf etwas ändert (Neuanschaffung von Geräten, Umstellung der Produktion, Änderungen des Dienstleistungsspektrums). Die Wirksamkeit dieser Schulungen ist fortwährend zu überprüfen und zu dokumentieren.50

Das Personal ist über das QM-System in Kenntnis zu setzen und über Änderungen regelmäßig zu informieren. Sämtliche QM-Schriftstücke sind in allseits verständlicher schriftlicher Form dem Personal zugänglich zu machen (Papierform, Aushang, Intranet, etc.). Sämtliche Aus-, Fort- und Weiterbildungen sind zu dokumentieren.46, 50

\section*{4.8.6 Infrastruktur unter ISO 9001}

Der gesamte Produktionsbereich ist nach gültigen nationalen und internationalen Richtlinien auszustatten, hierzu zählen vor allem maschinelle und EDV-Systeme sowie Sicherheitseinrichtungen und nach Bedarf Transportsysteme. Die Arbeitsstätte ist so zu modellieren, dass jeglicher Prozess reibungslos ablaufen kann.50

\section*{4.8.7 Produktrealisierung und Weiterentwicklung unter ISO 9001}

Die Organisation hat geeignete Verifizierungs-, Validierungs- und Überwachungsverfahren für ihre relevanten Prozessaufgaben zu erstellen. Auch diese sind regelmäßig auf Aktualität zu überprüfen und gegebenenfalls mit internationalen Vorbildern zu vergleichen und anzupassen. Auch diese Schritte sind regelmäßig durch das Management zu überprüfen und zu dokumentieren.50

Eventuell sind spezielle Projekte oder Prozesse für einen speziellen Kunden zu erarbeiten. Auch diese müssen im QM-Handbuch niedergeschrieben sein. Außerdem sind dem Kunden stets Produktinformationen bereitzustellen. Rückmeldungen und Beschwerden von Seiten des Kunden sind zu dokumentieren und dem Management zu melden.50

Jegliche Produktentwicklung ist ebenso durch das QM-System und das Management zu prüfen und freizugeben. Entsprechende Dokumentationen und Kundeninformationen sind zu veranlassen. Sämtliche Schritte müssen validiert und verifiziert werden.50

4.8.8 Messung, Analyse und Verbesserung unter ISO 9001

4.9 Die Akkreditierung der ISO/IEC 15189 und der ISO/IEC 17025

eine Willenserklärung zu Qualitätssicherheit abgeben. In dieser Erklärung ist zu beschreiben, wie das Laboratorium dieses Qualitätsmanagement betreibt und prüfen wird.47

4.9.1 Die Hauptvorteile der ISO/IEC Implementierung46, 47, 48, 49

- Erweiterung des Kundenkreises, so werden Labors mir dieser Akkreditierung häufig anderen vorgezogen.
- Besseres Image & Reputations für das Labor.
- Steigerung der Datenqualität und der Effektivität.
- Gute Grundlage für andere aufbauende Qualitätssysteme, wie Good Manufacturing Practices und Good Laboratory Practices.
- Vollständige und einheitliche Dokumentation, die in anderen Kriterien meist fehlt, dies erleichtert die internationale Vergleichbarkeit der erhobenen Daten.

Die Einführung eines ISO/IEC Qualitätssystems hat verschiedenste Auswirkungen auf den Betrieb sowie auf die Organisation eines Labors.

4.9.1.1 Aufbau der Rahmenbedingungen

Ein Lenkungsausschuss ist zu bestellen und soll aus Vertretern des Labormanagements und Abteilungsleitern bestehen. Seine Aufgaben sind die Erstellung der allgemeinen Qualitätspolitik, eine Lückenanalyse einzuleiten, die Bestellung des Qualitätsmanagers und die Ausarbeitung eines QM-Handbuchs zu koordinieren und zu überwachen.47

Bei der Erstellung von Rahmenbedingungen sind die von allen Mitarbeitern geführten Arbeitsgruppen essentiell. Diese Gruppen erstellen in Zusammenarbeit die Regelungen für Ihren jeweiligen Arbeitsbereich. Die Aufgabe des Ausschusses ist es, diese Regeln auszuarbeiten, auszuformulieren und in schriftlicher Form zu dokumentieren.46, 47

Hierfür sind die Begriffe Prozess und Verfahren anzuwenden. „Ein Prozess beschreibt Maßnahmen, mit denen die beabsichtigte Regelung in die Praxis umgesetzt wird. Prozesse werden von Arbeitsgruppen entwickelt, enthalten allgemeine Anweisungen und verteilen Zuständigkeiten für Tätigkeiten, die erforderlich sind, um die Zwecke der Regelung zu erfüllen. Für jedes Element des QM-Systems kann es mehrere Prozesse geben.“47

Demgegenüber sind „Verfahren Schritt für Schritt beschriebene Anweisungen, die definieren, wie eine bestimmte Tätigkeit durchzuführen ist. Sie werden üblicherweise von Mitarbeitern ausgearbeitet, die mit der Tätigkeit vertraut sind, und können Informationen
aus Produktbeilagen oder Gerätehandbüchern enthalten. Für jeden Ablauf kann es mehrere Verfahren geben.\footnote{47}

Die Informationen, wie man Regelungen, Strategien oder Verfahren für ein QM-System erstellt, sind begrenzt. Allerdings existieren zwei Leitlinien des CLSI.\footnote{46, 47}

Hierfür steht das GP26-A3 als Modell einer QM-Systemanwendung für Labordienstleistungen und das HS01-A2 für das Modell eines QMS für das Gesundheitswesen. Beide befassen sich ausführlich mit der Analyse des Laborbetriebs und der Erstellung von Regelungen, Prozessen und Verfahren.\footnote{46, 47}

4.9.2 Technische Anforderungen

Die Befugnis, um Mess-, Prüf- und Kalibrierungsarbeiten durchzuführen, muss vom Management ausgesprochen und regelmäßig überprüft werden. Es ist schriftlich zu dokumentieren, wann diese Befugnis ausgestellt wurde. Sämtliche Aufzeichnungen sind zu standardisieren, eindeutig zu kennzeichnen, schnell griffbereit zu haben und gegen unbefugten Zugriff zu schützen.\footnote{46, 47}

Die Räumlichkeiten sind so zu wählen bzw. auszustatten, dass die Umgebung keinerlei Einfluss auf eventuelle Ergebnisse haben kann. Hierfür sind effektive Trennungen der Abschnitte anzudenken. Die Umgebungsparameter (Temperatur, Luftfeuchtigkeit, Verunreinigungen) sind zu überwachen bzw. aufzuzeichnen. Besonderes Augenmerk gilt insofern der biologischen Sterilität, eventuellen Beeinflussungen von elektromagnetischen Interferenzen sowie Schallwellen, Vibrationen und dergleichen mehr. Sofern die Umgebungsbedingungen zwischendurch nicht im Rahmen der Herstellerspezifität sind, müssen Prüfungen sofort abgebrochen und dokumentiert werden.\footnote{46, 47}

und zu verwahren. Sollten innerhalb dieser Audits Probleme und Fehler auftauchen, ist dies sämtlichen Kunden mitzuteilen.46
Die Verarbeitung der Daten ist ebenso ein wichtiger Eckpunkt. Unbedingt muss die Datenübertragung in Echtzeit geprüft werden können, hierfür empfiehlt sich die Verwendung von MD5-Prüfsummen.46 Dies steht für Message Digest Algorithm der fünften Generation und ist eine kryptographische Hashprüffunktion, die die Gänze und Korrektheit der Datenübertragung erfassen kann. Es versteht sich als Grundvoraussetzung, dass sämtliche Geräte für die Durchführung von Mess-, Prüf- und Kalibrierungsverfahren dafür geeignet und entsprechend gekennzeichnet sind sowie geprüft und gewartet werden. Fremdsoftware, die nicht für den Betrieb relevant ist, ist zu vermeiden bzw. zu blockieren. Die Benutzerkonten sind so anzulegen, dass ein Herunterladen von fragwürdiger Internetsoftware oder ähnliche Inhalte blockiert werden. Die Auswahl von Computerhardware ist so zu treffen, dass die verwendeten Geräte keinesfalls den Arbeitsablauf der Laborgeräte stören können. Sämtliche elektronische Daten müssen geschützt und durch ein Backup gesichert werden. Es sind auch entsprechende Zugriffsrechte zu setzen.46, 47

4.9.3 Ausgabe von Ergebnissen

Die Qualität und Genauigkeit von Ergebnissen ist stets zu überwachen. Dies geschieht durch regelmäßige Testungen der Gerätschaften mit entsprechenden Referenzmaterialien, Wiederholungsprüfungen oder Kalibrierungen. Diese haben in regelmäßigen Abständen zu erfolgen und müssen nachvollziehbar dokumentiert sein.46, 47
müssen verzeichnet sein. Dies kann entweder durch Namen und Position oder durch eindeutige Mitarbeiternummern geschehen. Letztlich sind neben den Ergebnissen auch die Referenzwerte und Angaben zu möglichen Messungenauigkeiten und deren Bandbreite zu dokumentieren. Meinungen des auswertenden Mitarbeiters sind eindeutig zu kennzeichnen. Außerdem muss auf jedem Ergebnis eine Angabe der möglichen Messungenauigkeit bzw. der Messtoleranz angegeben werden.46, 47

Zentrale Aspekte:46, 47, 49
- Alle Faktoren, die die Qualität der Ergebnisse beeinflussen, sind zu dokumentieren. Hierzu zählt die Probennahme, die Geräte, die Prüfmethoden und sämtliche Umgebungsbedingungen. Sollten hierdurch die Ergebnisse verfälscht werden können, sind die Fehlerquellen zu dokumentieren und auszuschalten.
- Für das Durchführen von Kalibrierungen und dem Umgang mit Proben ist ausschließlich qualifiziertes Personal vorgesehen.
- Schulungssysteme sind zu entwickeln und regelmäßig anzubieten.
- Bei technischen Aufzeichnungen wie Prüfberichten für analytische Messungen müssen die Originalaufzeichnungen mit den Verarbeitungsparametern sicher aufbewahrt werden, sodass ein Ergebnis stets verlässlich zurückverfolgt werden kann.
- Das Korrigieren von Aufzeichnungen ist zulässig, allerdings sind Fehler so zu streichen, dass diese dennoch lesbar bleiben. Bei elektronischer Verarbeitung muss stets eine Kopie der ursprünglichen Version gespeichert bleiben.
- Den Angaben der Hersteller bezüglich dem Aufstellungsort der Testgeräte sind in jeder Hinsicht Folge zu leisten.
- Der Zugang zu Mess-, Prüf- und Kalibrierungsbereichen ist so einzuschränken, dass nur befugte Personen Zutritt erhalten, dies ist zum Beispiel durch Zugangskarten oder Mitarbeiterkeys zu erreichen.
- Die Anwendungsbereiche für sämtliche Messungen müssen klar definiert werden. Es dürfen ausschließlich geeignete und validierte Methoden gewählt werden.
- Für die Verwendung von Standardmethoden muss das Labor überprüfen, ob die erforderlichen Kompetenzen vorliegen.
- Es dürfen auch selbstentwickelte Methoden verwendet werden, allerdings müssen bei Validierung Punkte wie Nachweisgrenze, Quantifizierungsgrenze,
Genauigkeit, Selektivität, Wiederhol- und Reproduzierbarkeit, Stabilität und Linearität beachtet und eingehalten werden.
- Es sind Verfahren zu erstellen, die Messunsicherheiten einschätzen und beschränken lassen.
- Sollte die Rückverfolgbarkeit mittels SI-Einheiten unmöglich sein, so sind geeignete Rückverfolgbarkeitsstandards zu verwenden. Dies beinhaltet zertifiziertes Referenzmaterial bzw. durch Konsens entwickelte Methoden und primäre bzw. sekundäre Standards. Ebenso besteht die Möglichkeit auf Standardreferenzmaterial des Herstellers zurückzugreifen, sofern dies für die vorgesehene Messung zulässig ist.
- Es ist sicherzustellen, dass Geräte fortlaufend geprüft und gewartet werden. Hierfür sind Wartungsintervalle festzulegen oder von Dritten (z.B. Herstellern) zu übernehmen.
- Sollten Geräte einen Defekt aufweisen, sind diese zu deaktivieren und entsprechend zu kennzeichnen.

4.9.4 Management

4.9.5 Kontrolle der Dokumente

Alle erstellten Dokumente sind zu genehmigen, regelmäßig zu prüfen und gegebenenfalls zu aktualisieren. Die Häufigkeit der Aktualisierungen und Überprüfungen ist je nach Dokument unterschiedlich. Typische Intervalle bewegen sich zwischen 12 und 36 Monaten. Bei Änderungen von Dokumenten gelten die gleichen Vorgaben wie bei der Neuerstellung.46, 47, 49

4.9.6 Interne und externe Audits

Interne Audits werden von firmeninternen Qualitätsmanagern durchgeführt und überwachen die Einhaltung der Normen. Sie dienen nicht nur der Überprüfung und der Fehlereaufsicht, sondern sollen auch vorbereitend für externe Audits sein. Diese externen Audits werden von den Akkreditierungsstellen regelmäßig entsandt und überprüfen die strikte Einhaltung der Normen.46, 47

Vorbereitend sind innerhalb des Labors Verantwortliche für einzelne Bereiche zu bestellen, die nicht nur die Normen einhalten, sondern auch im Rahmen der Audits dem Prüfer zur Verfügung stehen. Alle Mitarbeiter, die davon betroffen sind, müssen geschult und regelmäßig rezeertifiziert werden.46, 47, 49

Sämtliche Überprüfungen sind an einen Zeitplan zu binden. Für die internen Audits kann dieser selbst erstellt werden, externe Prüfungstermine werden bekanntgegeben.46, 47
5 ERGEBNISSE

5.1 Auswertung der Patientenseren

5.1.1 Auswertung und Vergleiche der Messergebnisse der beiden ELISA-Tests

Insgesamt waren auf die Anti-HCV-Testungen 60 der Testseren positiv und 40 negativ.

5.1.1.1 Kreuztabelle ARCHITECT®

In der unten gezeigten Kreuztabelle sind die Messergebnisse des ARCHITECT® zusammengefasst. So hat der ARCHITECT® 38/40 richtig positive und 36/60 richtig negative Ergebnisse geliefert. Das bedeutet im Umkehrschluss, dass es 24 falsch positive Ergebnisse und 2 falsch negative Testergebnisse gab.

<table>
<thead>
<tr>
<th>ARCHITECT®</th>
<th>RIBA</th>
</tr>
</thead>
<tbody>
<tr>
<td>ELISA</td>
<td>NEGATIV</td>
</tr>
<tr>
<td></td>
<td>36</td>
</tr>
<tr>
<td></td>
<td>24</td>
</tr>
</tbody>
</table>

5.1.1.2 Kreuztabelle VIDAS®

In der unten stehenden Kreuztabelle sind die Messergebnisse des VIDAS® aufgelistet. Damit hat der VIDAS® 39/40 richtig positive und 51/60 richtig negative als solche erkannt. Im Umkehrschluss bedeutet dies, dass 9 falsch positive und 1 falsch negatives Messergebnis ermittelt wurden.
5.1.1.3 Vergleiche zu falsch positiven und falsch negativen Ergebnissen

Beide Tests weisen falsch positive Ergebnisse auf, allerdings der ARCHITECT® deutlich mehr. Bei insgesamt sechs Testseren (samples: 25, 43, 49, 68, 81, 83) waren beide ELISA-Tests gleichzeitig falsch positiv.

Bei den zwei falsch negativen Ergebnissen des ARCHITECT® verhielt es sich so, dass sample 65 durch den VIDAS® ein deutlich erhöhtes Testergebnis (9,78 IU) lieferte, während bei sample 93 ein geringfügig erhöhter Wert (1,73 IU) gemessen wurde.

Der VIDAS® lieferte bei sample 33 ein falsch negatives Ergebnis, hier wurde durch den ARCHITECT® auch nur ein schwächer positives Ergebnis (1,21 IU) geliefert.

5.1.2 Nachmessungen von indifferenten Proben

Bei vier Proben wurde eine zweite Testreihe durchgeführt.

2) Sample 33 ergab bei der ersten Testung einen positiven RIBA, der ARCHITECT® war positiv und der VIDAS® negativ. Die durchgeführte PCR wies ein positives Ergebnis auf. Nach der zweiten Messung waren der ARCHITECT® als auch der VIDAS® positiv.

3) Sample 65 ergab bei der ersten Testung einen positiven RIBA, der ARCHITECT® war negativ und der VIDAS® positiv. Die PCR war positiv. Nach der Auswertung des zweiten Probendurchlauß waren nun sowohl der ARCHITECT® als auch der VIDAS® positiv.

4) Sample 93 ergab bei der ersten Testung einen positiven RIBA, der ARCHITECT® war negativ und der VIDAS® positiv. Die PCR zeigte ein positives Ergebnis. Der
ARCHITECT® zeigte nach der zweiten Messung nach wie vor ein falsch negatives Ergebnis, der VIDAS® war abermals positiv.

Tabelle 9
<table>
<thead>
<tr>
<th>No.</th>
<th>PCR</th>
<th>ARCHITECT Wert</th>
<th>VIDAS Wert</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 19</td>
<td>0</td>
<td>1,63</td>
<td>1,79</td>
<td>Nach zweiter Messung: FALSCH POS BEIDE</td>
</tr>
<tr>
<td>sample 33</td>
<td>1</td>
<td>1,86</td>
<td>1,26</td>
<td>Korrigiert: Vorher: FALSCH NEG NEU</td>
</tr>
<tr>
<td>sample 65</td>
<td>1</td>
<td>2,15</td>
<td>9,11</td>
<td>Korrigiert: Vorher FALSCH NEG ALT</td>
</tr>
<tr>
<td>sample 93</td>
<td>1</td>
<td>0,13</td>
<td>1,86</td>
<td>Auch nach zweiter Messung: FALSCH NEG ALT</td>
</tr>
</tbody>
</table>

5.1.3 Gegenüberstellung der Messergebnisse, Differenz & Mittelwert

Bei genauer Betrachtung der Messergebnisse fällt auf, dass in einem Großteil der Fälle die Ergebnisse des VIDAS® in International-Units deutlich höher sind. Der Mittelwert der Messungen des VIDAS® war um 2,44 IU bzw. um 9% höher im Vergleich zum ARCHITECT®. Sofern nur die 40 positiven Ergebnisse herausgenommen werden, zeigt sich eine mittlere Differenz von 6,6 IU bzw. 25,4% des VIDAS® im Vergleich zum ARCHITECT®. Auch diese Detailergebnisse sind in der Gesamttabelle Tabelle 14 im Anhang nachzuverfolgen.

5.2 Testergebnisse Intra- und Inter-Assay

Um die Abweichung der beiden Tests zu bestimmen, wurden sowohl ein Inter-Assay als auch ein Intra-Assay bestimmt.

5.2.1 Intra-Assay

Tabelle 10 Intra-Assay VIDAS®

<table>
<thead>
<tr>
<th>No.</th>
<th>Intra-Assay</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Mittelwert:</th>
<th>VK(%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 12</td>
<td>LOW</td>
<td>0,36</td>
<td>0,43</td>
<td>0,36</td>
<td>0,38</td>
<td>10,5</td>
</tr>
<tr>
<td>sample 30</td>
<td>MEDIUM</td>
<td>5,70</td>
<td>5,73</td>
<td>5,09</td>
<td>5,51</td>
<td>6,6</td>
</tr>
<tr>
<td>sample 27</td>
<td>HIGH</td>
<td>22,05</td>
<td>22,24</td>
<td>21,98</td>
<td>22,09</td>
<td>0,6</td>
</tr>
</tbody>
</table>

Tabelle 11 Intra-Assay ARCHITECT®

<table>
<thead>
<tr>
<th>No.</th>
<th>Intra-Assay</th>
<th>Test 1</th>
<th>Test 2</th>
<th>Test 3</th>
<th>Mittelwert:</th>
<th>VK(%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 12</td>
<td>LOW</td>
<td>0,14</td>
<td>0,14</td>
<td>0,13</td>
<td>0,14</td>
<td>4,2</td>
</tr>
<tr>
<td>sample 30</td>
<td>MEDIUM</td>
<td>2,53</td>
<td>2,52</td>
<td>2,66</td>
<td>2,57</td>
<td>3,0</td>
</tr>
<tr>
<td>sample 27</td>
<td>HIGH</td>
<td>13,85</td>
<td>14,87</td>
<td>14,67</td>
<td>14,46</td>
<td>3,7</td>
</tr>
</tbody>
</table>

5.2.2 Inter-Assay

Tabelle 12 Inter-Assay VIDAS®

<table>
<thead>
<tr>
<th>No.</th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
<th>Tag 4</th>
<th>Tag 5</th>
<th>MW:</th>
<th>VK(%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 43</td>
<td>0,96</td>
<td>1,04</td>
<td>0,94</td>
<td>1,08</td>
<td>0,98</td>
<td>1,01</td>
<td>5,3</td>
</tr>
</tbody>
</table>

Tabelle 13 Inter-Assay ARCHITECT®

<table>
<thead>
<tr>
<th>No.</th>
<th>Tag 1</th>
<th>Tag 2</th>
<th>Tag 3</th>
<th>Tag 4</th>
<th>Tag 5</th>
<th>MW:</th>
<th>VK(%):</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 43</td>
<td>0,93</td>
<td>0,90</td>
<td>1,00</td>
<td>0,89</td>
<td>1,09</td>
<td>0,93</td>
<td>1,09</td>
</tr>
</tbody>
</table>

Es zeigt sich jedoch, dass im Verlauf der VIDAS® und der ARCHITECT® an unterschiedlichen Tagen falsch positive Ergebnisse liefern. Die verwendete Probe ist allerdings sowohl im Immunoblot als auch in der PCR negativ.
5.3 Grafische Darstellung über Passing-Bablok

Die line of identity ist der Bezugspunkt beider Messmethoden, hier grau. Die blaue Linie zeigt die Abweichungen beider Testergebnisse auf. Der VIDAS® weist in 28/40 HCV positiven Proben wesentlich höhere Werte auf. Die Gegenüberstellung der positiven Testergebnisse zeigt, dass die mittlere absolute Differenz +6,6 IU beträgt. Dies ergibt eine mittlere Differenz von +2,44 IU bzw.+25,4% des VIDAS® im Vergleich zum ARCHITECT®.
6 DISKUSSION

6.1 Gegenüberstellung der Ergebnisse des VIDAS® gegenüber Architect®

In den folgenden Kapiteln werden die erhobenen Messwerte diskutiert. Außerdem werden die Vor- und Nachteile der Bedienung beider Geräte besprochen.

6.1.1 Diskussion der ARCHITECT® Ergebnisse

Erwähnenswert in diesem Zusammenhang ist, dass sechs Testseren sowohl bei dem ARCHITECT® als auch bei dem VIDAS® falsch positiv waren.

Des Weiteren wurden zwei falsch negative Ergebnisse gemessen. Bei den betroffenen Samples 65 und 93 waren die Testergebnisse des VIDAS® deutlich positiv.

Damit ist die Sensitivität des ARCHITECT® etwas geringer als die des VIDAS®, aber mit den Herstellerangaben von 99,1% vergleichbar.40

Bei der Nachmessung wurde bei sample 65 auch der ARCHITECT® positiv, während bei sample 93 das Ergebnis abermals negativ war.

6.1.2 Diskussion der VIDAS® Ergebnisse

Der VIDAS® erkannte nur neun Proben falsch positiv, wobei sechs die gleichen waren wie beim ARCHITECT®. Laut Angaben von bioMerieux™ beträgt die Spezifität 99,61%. Dies ergab eine Testreihe von 5.104 getesteten Blutspenden. Dieser Wert konnte in dieser Untersuchung nicht bestätigt werden.39

Die errechnete Spezifität beträgt in dieser Untersuchung 85 Prozent und damit deutlich höher als die des ARCHITECT®.

Insgesamt ergab der VIDAS® nur ein falsch negatives Ergebnis. Dies deckt sich mit den Herstellerunterlagen. In diesen wird eine Sensitivität von 99,77% angegeben.39
6.1.3 Umgang mit falsch negativen Ergebnissen

Das Nichterkennen von positiven Patientenserien muss unbedingt vermieden werden. Aus diesem Grund werden alle Proben mittels RIBA getestet. Im Zweifelsfall ist eine PCR anzuordnen.

In jedem Fall ist zu beachten, dass ein diagnostisches Fenster vorliegen kann. Deshalb ist bei weiterem klinischem Verdacht in jedem Fall die Testung nach wenigen Wochen mit einer neuerlichen Probenentnahme zu testen.

6.1.4 Handhabung ARCHITECT®

Die Testung der Proben erfolgt in einem Karussellsystem. Jeder Bereich stellt eine Station des Testablaufs dar, und jede Probe wird hintereinander durch dieses Karussell geführt.

Für die tägliche automatisierte Reinigung sind im Gerät Wasch- und Reinigungsmittelkanister verbaut.

6.1.5 Handhabung VIDAS®

Für die Analyse muss das Patientenserum per Hand in das VIDAS®-Testkit pipettiert werden. Hierbei kann das Ergebnis durch unsachgemäßes Pipettieren wesentlich beeinflusst werden.
Beim VIDAS® müssen die Pipettierspitzen mit dem Festphasenrezeptor (SPR®) selbst eingelegt werden.

6.1.6 Umgang mit kontaminiertem Testmaterial

Das gesamte Laborpersonal muss sich bewusst sein, dass bei der Anwendung beider Testverfahren mit potentiell gefährlichem Material umgegangen wird. Beim ARCHITECT® ist dies vor allem beim Einscannen der Probenbehältnisse und beim regelmäßigen Entleeren des Abwurfbehältnisses der Fall. Da das Pipettieren selbstständig durch das Gerät geschieht, besteht hier keine Gefahr.

Im Falle des VIDAS® besteht beim Befüllen sowie beim Entsorgen der durchgelaufenen Testbestandteile Kontaminationsgefahr. Während der gesamten Arbeit bei und mit diesen Geräten sind Handschuhe und Schutzbrille zu tragen.

Dies sollte auch eindeutig im jeweiligen QM-Handbuch niedergeschrieben werden und zusätzlich deutlich sichtbar angeschlagen sein.

6.2 Vergleiche internationaler Qualitätsmanagementsysteme

6.2.1 Zusammenfassung der Rahmenbedingungen der ISO 9001

Zusammenfassend ist die ISO 9001 eine Verpflichtungserklärung für die Einführung eines Qualitätsmanagements. Im Wesentlichen geht es um die Erstellung eines Handbuchs, das jedem Mitarbeiter zugänglich gemacht werden muss. Rahmenbedingungen sind zu erstellen und regelmäßig auf Aktualität zu prüfen. Die Erstellung des Handbuchs ist individuell und kann auf jede Art von Firma zugeschnitten werden.

In den akkreditierten ISO-Formen sind meist straffer formulierter Rahmenbedingungen zu lesen. Außerdem haben diese Normen Regelungen aufgenommen, die speziell für Laboratorien geschaffen wurden.

Bei den regelmäßigen Aktualisierungen dieser Norm wird stets nur auf die Verbesserung allgemeiner Richtlinien eingegangen. Da diese Norm ein so breites Anwenderspektrum hat, ist ein explizites Eingehen auf eine Fachrichtung weder effizient noch möglich.

6.2.2 Zusammenfassung der Rahmenbedingungen der ISO 15189 & ISO 17025

Die Normen ISO 15189 und ISO 17025 wurden speziell für medizinische Laboratorien bzw. Prüflabors erstellt.

Die Akkreditierung geht zwar mit einem höheren Kostenaufwand einher, allerdings kann sich ein Labor über diese Akkreditierung mit Sicherheit neue Märkte erschließen und erlangt internationale Anerkennung.

So sind nicht nur die Richtlinien für die Erreichung dieser ISO strenger, sondern es ist bedeutend schwieriger und personell aufwendiger, sich zu akkreditieren. Sowohl das Management als auch alle Mitarbeiter müssen in den Prozess eingebunden werden. Fehler müssen erkannt, korrigiert und fachlich korrekt dokumentiert werden. Durch diese internationalen Vorgaben können Systemfehler effizient erkannt und beseitigt, im besten Fall vermieden werden. Der Erfahrungsaustausch zwischen Laboratorien ist damit einfacher und umfangreicher.
Obwohl die realen Kosten für die Akkreditierungen nirgends veröffentlicht wurden, ist davon auszugehen, dass diese wesentlich höher liegen werden. Allerdings lässt sich vermuten, dass die Kosten durch nationale und internationale Aufträge schnell refundiert werden können. Laboratorien, die um internationales Ansehen und vor allem Aufträge werben, werden in Zukunft nicht umhin kommen, den Akkreditierungsweg einzuschlagen.

6.3 Schlussfolgerung

7 Literaturverzeichnis / Quellenverzeichnis

5 Gschwantler M et al.. Hepatitis C – state of the art, DFP Literaturstudium, ÖAZ, 2010.

7 Rásky E (Hg.). Gesundheit hat Bleiberecht, Migration und Gesundheit, Facultas, 2009.

24 www.labor-limbach.de/IL28B-Genotyp.535.0.html (Zugriff am 31.5.2013).

32 Bundes Bericht zur Drogensituation, 2012.

38 Beiblatt für Testanleitung zu Test INNO-LIA ™ HCV Score, Innogenetics®, 2010.

40 Bedienungsanweisung zu Test ARCHITECT™ Anti-HCV, REF 48-9292/R5, deutsche Ausgabe, Abbott Diagnostics Division, Oktober 2009.

48 Damberger K., Qualitätsmanagement in medizinischen Laboratorien, wissenschaft & praxis, Frühjahr 2013.

55 Europäische Beratungsstelle für Drogen und Drogensucht, 2008; Mathers et al., 2008.

64 Mielsch C., Evaluierung eines spektrofotometrischen Bestimmungsverfahrens für die Serumkonzentration des Neugeborenen-Bilirubins, Dissertation an der Technischen Universität München, 2012.

Anhang

Ergebnistabelle im Detail

Tabelle 14: Auswertung der Patientenproben im Detail

<table>
<thead>
<tr>
<th>sample No.</th>
<th>sex</th>
<th>age</th>
<th>RIBA</th>
<th>ARCH</th>
<th>Wert</th>
<th>VIDAS</th>
<th>Mittlere Differenz</th>
<th>Mittelwert</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>a)</td>
<td>b)</td>
<td>absolut</td>
<td>relative</td>
<td></td>
</tr>
<tr>
<td>sample 1</td>
<td>w</td>
<td>54</td>
<td>1</td>
<td>1</td>
<td>8,60</td>
<td>1</td>
<td>16,37</td>
<td>7,77</td>
<td>90,35</td>
</tr>
<tr>
<td>sample 2</td>
<td>w</td>
<td>29</td>
<td>1</td>
<td>1</td>
<td>10,03</td>
<td>1</td>
<td>17,63</td>
<td>7,60</td>
<td>75,77</td>
</tr>
<tr>
<td>sample 3</td>
<td>w</td>
<td>31</td>
<td>0</td>
<td>1</td>
<td>3,44</td>
<td>0</td>
<td>0,15</td>
<td>-3,29</td>
<td>-95,64 falsch pos a)</td>
</tr>
<tr>
<td>sample 4</td>
<td>m</td>
<td>25</td>
<td>1</td>
<td>1</td>
<td>14,16</td>
<td>1</td>
<td>23,89</td>
<td>9,73</td>
<td>68,71</td>
</tr>
<tr>
<td>sample 5</td>
<td>w</td>
<td>83</td>
<td>0</td>
<td>0</td>
<td>0,17</td>
<td>0</td>
<td>0,36</td>
<td>0,19</td>
<td>111,76</td>
</tr>
<tr>
<td>sample 6</td>
<td>m</td>
<td>29</td>
<td>0</td>
<td>0</td>
<td>0,10</td>
<td>0</td>
<td>0,19</td>
<td>0,09</td>
<td>90,00</td>
</tr>
<tr>
<td>sample 7</td>
<td>w</td>
<td>25</td>
<td>0</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0,76</td>
<td>0,63</td>
<td>484,62</td>
</tr>
<tr>
<td>sample 8</td>
<td>m</td>
<td>54</td>
<td>0</td>
<td>1</td>
<td>1,17</td>
<td>0</td>
<td>0,28</td>
<td>-0,89</td>
<td>-76,07 falsch pos a)</td>
</tr>
<tr>
<td>sample 9</td>
<td>m</td>
<td>49</td>
<td>0</td>
<td>0</td>
<td>0,13</td>
<td>0</td>
<td>0,18</td>
<td>0,05</td>
<td>38,46</td>
</tr>
<tr>
<td>sample 10</td>
<td>m</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0,10</td>
<td>0</td>
<td>0,17</td>
<td>0,07</td>
<td>70,00</td>
</tr>
<tr>
<td>sample 11</td>
<td>m</td>
<td>37</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0,24</td>
<td>0,17</td>
<td>242,86</td>
</tr>
<tr>
<td>sample 12</td>
<td>m</td>
<td>70</td>
<td>0</td>
<td>0</td>
<td>0,11</td>
<td>0</td>
<td>0,38</td>
<td>0,27</td>
<td>245,45</td>
</tr>
<tr>
<td>sample 13</td>
<td>m</td>
<td>20</td>
<td>0</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0,88</td>
<td>0,80</td>
<td>1000,00</td>
</tr>
<tr>
<td>sample 14</td>
<td>w</td>
<td>67</td>
<td>2</td>
<td>1</td>
<td>4,94</td>
<td>1</td>
<td>20,10</td>
<td>15,16</td>
<td>306,88</td>
</tr>
<tr>
<td>sample 15</td>
<td>w</td>
<td>28</td>
<td>2</td>
<td>1</td>
<td>10,08</td>
<td>1</td>
<td>4,62</td>
<td>-5,46</td>
<td>-54,17</td>
</tr>
<tr>
<td>sample 16</td>
<td>m</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0,08</td>
<td>0</td>
<td>0,15</td>
<td>0,07</td>
<td>87,50</td>
</tr>
<tr>
<td>sample 17</td>
<td>m</td>
<td>49</td>
<td>0</td>
<td>1</td>
<td>2,18</td>
<td>0</td>
<td>0,77</td>
<td>-1,41</td>
<td>-64,68 falsch pos a)</td>
</tr>
<tr>
<td>sample 18</td>
<td>w</td>
<td>18</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0,14</td>
<td>0,05</td>
<td>55,56</td>
</tr>
<tr>
<td>sample 19</td>
<td>w</td>
<td>71</td>
<td>2</td>
<td>0</td>
<td>0,55</td>
<td>1</td>
<td>1,42</td>
<td>0,87</td>
<td>158,18 INDIFFERENT</td>
</tr>
<tr>
<td>sample 20</td>
<td>m</td>
<td>49</td>
<td>0</td>
<td>1</td>
<td>1,62</td>
<td>0</td>
<td>0,61</td>
<td>-1,01</td>
<td>-62,35 falsch pos a)</td>
</tr>
<tr>
<td>sample 21</td>
<td>w</td>
<td>57</td>
<td>1</td>
<td>1</td>
<td>4,85</td>
<td>1</td>
<td>3,63</td>
<td>-1,22</td>
<td>-25,15</td>
</tr>
<tr>
<td>sample 22</td>
<td>w</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>5,17</td>
<td>1</td>
<td>7,39</td>
<td>2,22</td>
<td>42,94</td>
</tr>
<tr>
<td>sample 23</td>
<td>w</td>
<td>58</td>
<td>0</td>
<td>0</td>
<td>0,10</td>
<td>0</td>
<td>0,15</td>
<td>0,05</td>
<td>50,00</td>
</tr>
<tr>
<td>sample 24</td>
<td>w</td>
<td>26</td>
<td>1</td>
<td>1</td>
<td>7,14</td>
<td>1</td>
<td>4,79</td>
<td>-2,35</td>
<td>-32,91</td>
</tr>
<tr>
<td>sample 25</td>
<td>m</td>
<td>64</td>
<td>0</td>
<td>1</td>
<td>1,22</td>
<td>1</td>
<td>1,17</td>
<td>-0,05</td>
<td>-4,10 falsch pos (beide)</td>
</tr>
<tr>
<td>sample 26</td>
<td>w</td>
<td>67</td>
<td>2</td>
<td>1</td>
<td>4,94</td>
<td>1</td>
<td>20,45</td>
<td>15,51</td>
<td>313,97</td>
</tr>
<tr>
<td>sample 27</td>
<td>w</td>
<td>49</td>
<td>1</td>
<td>1</td>
<td>14,14</td>
<td>1</td>
<td>23,89</td>
<td>9,75</td>
<td>68,95</td>
</tr>
<tr>
<td>sample 28</td>
<td>w</td>
<td>40</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,14</td>
<td>0,09</td>
<td>180,00</td>
</tr>
<tr>
<td>sample 29</td>
<td>m</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>1,32</td>
<td>0</td>
<td>0,44</td>
<td>-0,88</td>
<td>-66,67 falsch pos a)</td>
</tr>
<tr>
<td>sample No.</td>
<td>sex</td>
<td>age</td>
<td>RIBA Wert</td>
<td>ARCH a)</td>
<td>VIDAS b)</td>
<td>Wert</td>
<td>Mittelwert</td>
<td>Mittelwert</td>
<td>Differenz absolute</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>-----</td>
<td>------------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>sample 30</td>
<td>w</td>
<td>30</td>
<td>1</td>
<td>2,93</td>
<td>1</td>
<td>2,84</td>
<td>-0,09</td>
<td>-3,07</td>
<td></td>
</tr>
<tr>
<td>sample 31</td>
<td>w</td>
<td>33</td>
<td>0</td>
<td>2,12</td>
<td>0</td>
<td>0,75</td>
<td>-1,37</td>
<td>-64,62</td>
<td></td>
</tr>
<tr>
<td>sample 32</td>
<td>m</td>
<td>54</td>
<td>0</td>
<td>0,13</td>
<td>1</td>
<td>1,02</td>
<td>0,89</td>
<td>684,62</td>
<td></td>
</tr>
<tr>
<td>sample 33</td>
<td>w</td>
<td>59</td>
<td>1</td>
<td>1,21</td>
<td>0</td>
<td>0,75</td>
<td>-0,46</td>
<td>-38,02</td>
<td></td>
</tr>
<tr>
<td>sample 34</td>
<td>m</td>
<td>61</td>
<td>2</td>
<td>0,18</td>
<td>0</td>
<td>0,32</td>
<td>0,14</td>
<td>77,78</td>
<td></td>
</tr>
<tr>
<td>sample 35</td>
<td>w</td>
<td>22</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,26</td>
<td>0,21</td>
<td>420,00</td>
<td></td>
</tr>
<tr>
<td>sample 36</td>
<td>w</td>
<td>84</td>
<td>0</td>
<td>0,38</td>
<td>0</td>
<td>0,46</td>
<td>0,08</td>
<td>21,05</td>
<td></td>
</tr>
<tr>
<td>sample 37</td>
<td>w</td>
<td>25</td>
<td>1</td>
<td>12,91</td>
<td>1</td>
<td>26,26</td>
<td>13,35</td>
<td>103,41</td>
<td></td>
</tr>
<tr>
<td>sample 38</td>
<td>m</td>
<td>23</td>
<td>1</td>
<td>8,84</td>
<td>1</td>
<td>21,75</td>
<td>12,91</td>
<td>146,04</td>
<td></td>
</tr>
<tr>
<td>sample 39</td>
<td>m</td>
<td>21</td>
<td>2</td>
<td>10,88</td>
<td>1</td>
<td>11,91</td>
<td>1,03</td>
<td>9,47</td>
<td></td>
</tr>
<tr>
<td>sample 40</td>
<td>w</td>
<td>80</td>
<td>1</td>
<td>12,60</td>
<td>1</td>
<td>24,94</td>
<td>12,34</td>
<td>97,94</td>
<td></td>
</tr>
<tr>
<td>sample 41</td>
<td>m</td>
<td>72</td>
<td>1</td>
<td>15,27</td>
<td>1</td>
<td>24,59</td>
<td>9,32</td>
<td>61,03</td>
<td></td>
</tr>
<tr>
<td>sample 42</td>
<td>m</td>
<td>25</td>
<td>1</td>
<td>2,25</td>
<td>1</td>
<td>1,31</td>
<td>-0,94</td>
<td>-41,78</td>
<td></td>
</tr>
<tr>
<td>sample 43</td>
<td>m</td>
<td>75</td>
<td>0</td>
<td>1,02</td>
<td>1</td>
<td>1,05</td>
<td>0,03</td>
<td>2,94</td>
<td></td>
</tr>
<tr>
<td>sample 44</td>
<td>m</td>
<td>16</td>
<td>0</td>
<td>0,67</td>
<td>0</td>
<td>0,12</td>
<td>-0,55</td>
<td>-82,09</td>
<td></td>
</tr>
<tr>
<td>sample 45</td>
<td>w</td>
<td>62</td>
<td>1</td>
<td>14,89</td>
<td>1</td>
<td>27,36</td>
<td>12,47</td>
<td>83,75</td>
<td></td>
</tr>
<tr>
<td>sample 46</td>
<td>w</td>
<td>72</td>
<td>0</td>
<td>1,02</td>
<td>0</td>
<td>0,72</td>
<td>-0,30</td>
<td>-29,41</td>
<td></td>
</tr>
<tr>
<td>sample 47</td>
<td>w</td>
<td>59</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0,16</td>
<td>0,09</td>
<td>128,57</td>
<td></td>
</tr>
<tr>
<td>sample 48</td>
<td>w</td>
<td>70</td>
<td>1</td>
<td>6,86</td>
<td>1</td>
<td>20,17</td>
<td>13,31</td>
<td>194,02</td>
<td></td>
</tr>
<tr>
<td>sample 49</td>
<td>m</td>
<td>48</td>
<td>0</td>
<td>3,39</td>
<td>1</td>
<td>3,19</td>
<td>-0,20</td>
<td>-5,90</td>
<td></td>
</tr>
<tr>
<td>sample 50</td>
<td>w</td>
<td>20</td>
<td>0</td>
<td>1,15</td>
<td>0</td>
<td>0,28</td>
<td>-0,87</td>
<td>-75,65</td>
<td></td>
</tr>
<tr>
<td>sample 51</td>
<td>w</td>
<td>37</td>
<td>2</td>
<td>2,18</td>
<td>1</td>
<td>1,47</td>
<td>-0,71</td>
<td>-32,57</td>
<td></td>
</tr>
<tr>
<td>sample 52</td>
<td>m</td>
<td>48</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,12</td>
<td>0,07</td>
<td>140,00</td>
<td></td>
</tr>
<tr>
<td>sample 53</td>
<td>w</td>
<td>56</td>
<td>0</td>
<td>1,33</td>
<td>0</td>
<td>0,37</td>
<td>-0,96</td>
<td>-72,18</td>
<td></td>
</tr>
<tr>
<td>sample 54</td>
<td>m</td>
<td>56</td>
<td>0</td>
<td>1,15</td>
<td>0</td>
<td>0,86</td>
<td>-0,29</td>
<td>-25,22</td>
<td></td>
</tr>
<tr>
<td>sample 55</td>
<td>w</td>
<td>74</td>
<td>1</td>
<td>13,71</td>
<td>1</td>
<td>26,26</td>
<td>12,55</td>
<td>91,54</td>
<td></td>
</tr>
<tr>
<td>sample 56</td>
<td>m</td>
<td>71</td>
<td>1</td>
<td>14,10</td>
<td>1</td>
<td>27,19</td>
<td>13,09</td>
<td>92,84</td>
<td></td>
</tr>
<tr>
<td>sample 57</td>
<td>w</td>
<td>72</td>
<td>1</td>
<td>2,15</td>
<td>1</td>
<td>6,66</td>
<td>4,51</td>
<td>209,77</td>
<td></td>
</tr>
<tr>
<td>sample 58</td>
<td>m</td>
<td>55</td>
<td>1</td>
<td>12,01</td>
<td>1</td>
<td>25,23</td>
<td>13,22</td>
<td>110,07</td>
<td></td>
</tr>
<tr>
<td>sample 59</td>
<td>m</td>
<td>26</td>
<td>0</td>
<td>1,10</td>
<td>0</td>
<td>0,34</td>
<td>-0,76</td>
<td>-69,09</td>
<td></td>
</tr>
<tr>
<td>sample 60</td>
<td>w</td>
<td>54</td>
<td>2</td>
<td>0,72</td>
<td>0</td>
<td>0,33</td>
<td>-0,39</td>
<td>-54,17</td>
<td></td>
</tr>
<tr>
<td>sample 61</td>
<td>w</td>
<td>48</td>
<td>0</td>
<td>0,10</td>
<td>0</td>
<td>0,17</td>
<td>0,07</td>
<td>70,00</td>
<td></td>
</tr>
<tr>
<td>sample No.</td>
<td>sex</td>
<td>age</td>
<td>RIBA</td>
<td>ARCH</td>
<td>Wert</td>
<td>VIDAS</td>
<td>Wert</td>
<td>Mittelwert</td>
<td>mittlere Differenz</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>sample 62</td>
<td>m</td>
<td>58</td>
<td>1</td>
<td>1</td>
<td>13,32</td>
<td>1</td>
<td>25,84</td>
<td>12,52</td>
<td>93,99</td>
</tr>
<tr>
<td>sample 63</td>
<td>w</td>
<td>56</td>
<td>0</td>
<td>1</td>
<td>9,25</td>
<td>0</td>
<td>0,18</td>
<td>-9,07</td>
<td>-98,05</td>
</tr>
<tr>
<td>sample 64</td>
<td>w</td>
<td>71</td>
<td>1</td>
<td>1</td>
<td>2,95</td>
<td>1</td>
<td>3,21</td>
<td>0,26</td>
<td>8,81</td>
</tr>
<tr>
<td>sample 65</td>
<td>w</td>
<td>24</td>
<td>0</td>
<td>1</td>
<td>0,74</td>
<td>1</td>
<td>9,78</td>
<td>9,04</td>
<td>1221,62</td>
</tr>
<tr>
<td>sample 66</td>
<td>m</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>10,63</td>
<td>1</td>
<td>9,23</td>
<td>-1,40</td>
<td>-13,17</td>
</tr>
<tr>
<td>sample 67</td>
<td>m</td>
<td>47</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,32</td>
<td>0,27</td>
<td>540,00</td>
</tr>
<tr>
<td>sample 68</td>
<td>m</td>
<td>52</td>
<td>0</td>
<td>1</td>
<td>2,76</td>
<td>1</td>
<td>8,30</td>
<td>5,54</td>
<td>200,72</td>
</tr>
<tr>
<td>sample 69</td>
<td>m</td>
<td>72</td>
<td>1</td>
<td>1</td>
<td>13,27</td>
<td>1</td>
<td>26,98</td>
<td>13,71</td>
<td>103,32</td>
</tr>
<tr>
<td>sample 70</td>
<td>w</td>
<td>35</td>
<td>0</td>
<td>1</td>
<td>2,11</td>
<td>0</td>
<td>0,32</td>
<td>-1,79</td>
<td>-84,83</td>
</tr>
<tr>
<td>sample 71</td>
<td>w</td>
<td>74</td>
<td>0</td>
<td>0</td>
<td>0,11</td>
<td>0</td>
<td>0,07</td>
<td>-0,04</td>
<td>-36,36</td>
</tr>
<tr>
<td>sample 72</td>
<td>w</td>
<td>44</td>
<td>1</td>
<td>1</td>
<td>11,66</td>
<td>1</td>
<td>21,62</td>
<td>9,96</td>
<td>85,42</td>
</tr>
<tr>
<td>sample 73</td>
<td>?</td>
<td>20</td>
<td>0</td>
<td>1</td>
<td>1,02</td>
<td>0</td>
<td>0,44</td>
<td>-0,58</td>
<td>-56,86</td>
</tr>
<tr>
<td>sample 74</td>
<td>m</td>
<td>33</td>
<td>0</td>
<td>1</td>
<td>2,11</td>
<td>1</td>
<td>2,57</td>
<td>0,46</td>
<td>21,80</td>
</tr>
<tr>
<td>sample 75</td>
<td>m</td>
<td>60</td>
<td>1</td>
<td>1</td>
<td>12,13</td>
<td>1</td>
<td>27,28</td>
<td>15,15</td>
<td>124,90</td>
</tr>
<tr>
<td>sample 76</td>
<td>m</td>
<td>45</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0,26</td>
<td>0,12</td>
<td>85,71</td>
</tr>
<tr>
<td>sample 77</td>
<td>m</td>
<td>77</td>
<td>2</td>
<td>0</td>
<td>0,37</td>
<td>0</td>
<td>0,12</td>
<td>-0,25</td>
<td>-67,57</td>
</tr>
<tr>
<td>sample 78</td>
<td>m</td>
<td>19</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,26</td>
<td>0,21</td>
<td>420,00</td>
</tr>
<tr>
<td>sample 79</td>
<td>m</td>
<td>19</td>
<td>0</td>
<td>1</td>
<td>1,79</td>
<td>0</td>
<td>0,31</td>
<td>-1,48</td>
<td>-82,68</td>
</tr>
<tr>
<td>sample 80</td>
<td>m</td>
<td>81</td>
<td>0</td>
<td>0</td>
<td>0,26</td>
<td>0</td>
<td>0,34</td>
<td>0,08</td>
<td>30,77</td>
</tr>
<tr>
<td>sample 81</td>
<td>w</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>2,31</td>
<td>1</td>
<td>3,05</td>
<td>0,74</td>
<td>32,03</td>
</tr>
<tr>
<td>sample 82</td>
<td>m</td>
<td>60</td>
<td>0</td>
<td>0</td>
<td>0,88</td>
<td>0</td>
<td>0,28</td>
<td>-0,60</td>
<td>-68,18</td>
</tr>
<tr>
<td>sample 83</td>
<td>w</td>
<td>60</td>
<td>0</td>
<td>1</td>
<td>2,31</td>
<td>1</td>
<td>1,88</td>
<td>-0,43</td>
<td>-18,61</td>
</tr>
<tr>
<td>sample 84</td>
<td>m</td>
<td>33</td>
<td>2</td>
<td>1</td>
<td>2,11</td>
<td>1</td>
<td>1,97</td>
<td>-0,14</td>
<td>-6,64</td>
</tr>
<tr>
<td>sample 85</td>
<td>w</td>
<td>43</td>
<td>1</td>
<td>1</td>
<td>9,44</td>
<td>1</td>
<td>13,44</td>
<td>4,00</td>
<td>42,37</td>
</tr>
<tr>
<td>sample 86</td>
<td>m</td>
<td>76</td>
<td>0</td>
<td>1</td>
<td>1,39</td>
<td>0</td>
<td>0,23</td>
<td>-1,16</td>
<td>-83,45</td>
</tr>
<tr>
<td>sample 87</td>
<td>w</td>
<td>52</td>
<td>1</td>
<td>1</td>
<td>4,38</td>
<td>1</td>
<td>12,65</td>
<td>8,27</td>
<td>188,81</td>
</tr>
<tr>
<td>sample 88</td>
<td>w</td>
<td>78</td>
<td>0</td>
<td>0</td>
<td>0,07</td>
<td>0</td>
<td>0,18</td>
<td>0,11</td>
<td>157,14</td>
</tr>
<tr>
<td>sample 89</td>
<td>w</td>
<td>34</td>
<td>0</td>
<td>1</td>
<td>3,60</td>
<td>0</td>
<td>0,20</td>
<td>-3,40</td>
<td>-94,44</td>
</tr>
<tr>
<td>sample 90</td>
<td>w</td>
<td>71</td>
<td>1</td>
<td>1</td>
<td>12,65</td>
<td>1</td>
<td>25,80</td>
<td>13,15</td>
<td>103,95</td>
</tr>
<tr>
<td>sample 91</td>
<td>w</td>
<td>76</td>
<td>0</td>
<td>0</td>
<td>0,36</td>
<td>1</td>
<td>1,63</td>
<td>1,27</td>
<td>352,78</td>
</tr>
<tr>
<td>sample 92</td>
<td>w</td>
<td>27</td>
<td>1</td>
<td>1</td>
<td>4,94</td>
<td>1</td>
<td>5,98</td>
<td>1,04</td>
<td>21,05</td>
</tr>
<tr>
<td>sample No.</td>
<td>sex</td>
<td>age</td>
<td>RIBA</td>
<td>ARCH</td>
<td>Wert</td>
<td>VIDAS</td>
<td>Wert</td>
<td>Mittlere Differenz</td>
<td>absolut IU</td>
</tr>
<tr>
<td>------------</td>
<td>-----</td>
<td>-----</td>
<td>------</td>
<td>------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>sample 93</td>
<td>w</td>
<td>58</td>
<td>1</td>
<td>0</td>
<td>0,15</td>
<td>1</td>
<td>1,73</td>
<td>1,58</td>
<td>1053,33</td>
</tr>
<tr>
<td>sample 94</td>
<td>m</td>
<td>23</td>
<td>0</td>
<td>0</td>
<td>0,05</td>
<td>0</td>
<td>0,09</td>
<td>0,04</td>
<td>80,00</td>
</tr>
<tr>
<td>sample 95</td>
<td>w</td>
<td>75</td>
<td>0</td>
<td>1</td>
<td>1,19</td>
<td>0</td>
<td>0,57</td>
<td>-0,62</td>
<td>-52,10</td>
</tr>
<tr>
<td>sample 96</td>
<td>m</td>
<td>55</td>
<td>0</td>
<td>0</td>
<td>0,03</td>
<td>0</td>
<td>0,15</td>
<td>0,12</td>
<td>400,00</td>
</tr>
<tr>
<td>sample 97</td>
<td>m</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0,11</td>
<td>0</td>
<td>0,58</td>
<td>0,47</td>
<td>427,27</td>
</tr>
<tr>
<td>sample 98</td>
<td>w</td>
<td>55</td>
<td>1</td>
<td>1</td>
<td>1,24</td>
<td>1</td>
<td>1,56</td>
<td>0,32</td>
<td>25,81</td>
</tr>
<tr>
<td>sample 99</td>
<td>m</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>0,14</td>
<td>0</td>
<td>0,47</td>
<td>0,33</td>
<td>235,71</td>
</tr>
<tr>
<td>sample 100</td>
<td>m</td>
<td>42</td>
<td>0</td>
<td>0</td>
<td>0,09</td>
<td>0</td>
<td>0,27</td>
<td>0,18</td>
<td>200,00</td>
</tr>
<tr>
<td>Summe:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8.1.1 Legende für Ergebnistabelle im Detail

Tabelle 15 Legende für Ergebnistabelle

<table>
<thead>
<tr>
<th>LEGENDE:</th>
<th>NEGATIV</th>
<th>POSITIV</th>
<th>INDIFFERENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>RIBA</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>ARCHITECT®</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VIDAS®</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

8.1.2 Tabelle der Nachmessungen

Tabelle 16 Tabelle der Nachmessungen

<table>
<thead>
<tr>
<th>No.</th>
<th>PCR</th>
<th>ARCHITECT</th>
<th>Wert</th>
<th>VIDAS</th>
<th>Wert</th>
<th>Kommentar</th>
</tr>
</thead>
<tbody>
<tr>
<td>sample 19</td>
<td>0</td>
<td>1</td>
<td>1,63</td>
<td>1</td>
<td>1,49</td>
<td>FALSCH POS BEIDE</td>
</tr>
<tr>
<td>sample 33</td>
<td>1</td>
<td>1</td>
<td>1,21</td>
<td>1</td>
<td>1,26</td>
<td>FALSCH NEG NEU korrigiert</td>
</tr>
<tr>
<td>sample 65</td>
<td>1</td>
<td>1</td>
<td>2,15</td>
<td>1</td>
<td>9,78</td>
<td>FALSCH NEG ALT korrigiert</td>
</tr>
<tr>
<td>sample 93</td>
<td>1</td>
<td>0</td>
<td>0,13</td>
<td>1</td>
<td>1,73</td>
<td>FALSCH NEG ALT</td>
</tr>
</tbody>
</table>