Mögliche dentogene Ursachen für das Auftreten von Kieferhöhlen-Mykosen

Eine deskriptive retrospektive Studie an 430 Patienten der klinischen Abteilung für HNO

eingereicht von

Eva Dostal

Diplomarbeit zur Erlangung des akademischen Grades

Doktor der Zahnheilkunde

(Dr.med.dent.)

an der

Medizinischen Universität Graz

ausgeführt am

Department für Zahnärztliche Chirurgie und Röntgenologie
der Universitätsklinik für Zahn-, Mund- und Kieferheilkunde Graz

sowie an der

Universitätsklinik für Hals-, Nasen-, Ohren Graz

unter der Anleitung von

Ass.-Prof. Priv. - Doz. Dr.med.univ. Peter Valentin Tomazic

Ass.-Prof. Priv. - Doz. Dr.med.univ. Michael Payer

Graz, 11.2.2015
Eidesstattliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe, andere als die angegebenen Quellen nicht verwendet habe und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am 11.2.2015

Eva Dostal eh.
Inhaltsverzeichnis

I EINLEITUNG

1 Thematik und Hintergrund... 1
2 Ziel der Arbeit... 5

II ANATOMIE UND PHYSIOLOGIE

1 Anatomie des Oberkiefers.. 6
2 Anatomie der Nasenhöhle und Nasennebenhöhlen... 7
 2.1 Die Nasenhaupthöhle.. 7
 2.2 Die Nasennebenhöhlen.. 10
3 Spezielle Anatomie der Kieferhöhle... 10
4 Physiologie der Nasenhöhle und Nasennebenhöhlen.. 12
 4.1 Die Funktion der Nasennebenhöhlen... 13
 4.2 Der mukoziliare Transport.. 14

III SINUSITIS MAXILLARIS

1 Sinusitis maxillaris im eigentlichen Sinn.. 16
2 Dentogene Sinusitis maxillaris... 17
 2.1 Pathophysiologie.. 17
 2.2 Zahnärztliche Befunderhebung... 18
 2.3 Röntgendiagnostik.. 20
 2.4 Computertomographie... 20
IV MYKOSEN DER NASENNEBENHÖHLEN ..22

1 Einteilung der Mykosen ..23

1.1 Invasive Mykosen ...23

1.2 Aspergillom ...24

1.3 Nichtinvasive Mykosen ...24

V MYKOSE DER KIEFERHÖHLEN, FUNGUS BALL ..26

1 Morphologie ..26

2 Bildgebung ...29

3 Klinisch-pathologische Kriterien für die Diagnose des Fungus Ball 31

4 Pathophysiologie ...31

5 Prädisponierenden Faktoren ...32

6 Röntgendifichte Einschattungen ...33

VI DENTOGENE URSACHEN DER SINUSITIS MAXILLARIS UND

 DER MYKOSE DES SINUS MAXILLARIS ..37

1 Apikale Parodontitis ...37

2 Fremdkörper in der Kieferhöhle ...39

 2.1 Endodontische Materialien ..40

 2.2 Wurzelreste ...44

 2.3 Retinierte Zähne ...45

3 Mund-Antrum-Verbindung (MAV) ...45

4 Odontogene Kieferzysten ...46
4.1 Bildgebung zystischer Veränderungen...47
4.2 Entzündliche Zysten der Kieferhöhle...48
4.3 Zysten der Kieferhöhlenschleimhaut..50

VII THERAPIE DER DENTOGENEN SINUSITIS MAXILLARIS...51
1 Konservative Therapie..51
2 Chirurgische Therapie..52

VIII BEHEBUNG DER URSACHEN DER SINUSTIS MAXILLARIS UND
DER KIEFERHÖHLEN-MYKOSE..57
1 Extraktion..57
2 Schröder’sche Lüftung..57
3 Wurzelspitzenresektion..57
4 Entfernung von Fremdkörpern/luxierten Wurzelspitzen aus der Kieferhöhle........58
5 Plastische Deckung einer Mund-Antrum-Verbindung...60
6 Zystenoperationen..61

IX CHIRURGISCHE THERAPIE DER KIEFERHÖHLEN-MYKOSE......................................63

X ENDODONTIE..64
1 Indikationen..64
2 Ziel..65
3 Vorgehen..65
 3.1 Wurzelanatomie der Zähne 3-8 im Oberkiefer..66
 3.2 Foramen apicale..66
 3.3 Limit der Wurzelkanalfüllung...66
4 Wurzelkanalfüllmaterial...67
 4.1 Sealer..67
 4.2 Wurzelkanalstifte..70

5 Endodontie und Kieferhöhle..71

XI IMPLANTOLOGIE..74

1 Historischer Überblick..74

2 Moderne Implantologie..75
 2.1 Faktoren für eine erfolgreiche Osseointegration...75
 2.2 Die Implantatoperation..75
 2.3 Knochenaugmentation..76
 2.4 Komplikationen der Sinusbodenelevation...78

3 Implantate und Kieferhöhle..79

XII MATERIAL UND METHODE..81

1 Endpunkte..82
 1.1 Dentogene Ursachen..82
 1.2 Metalldichte Verkalkungen..83
 1.3 Seitenvergleich dentogener Ursachen der erkrankten mit der gesunden Seite..........83
 1.4 Kombinationen dentogener Ursachen auf der Seite der Mykose und auf der
gesunden Seite..83

XIII ERGEBNISSE..84

1 Fungus Ball der Kieferhöhlen...85
 1.1 Dentogene Ursachen..85
1.2 Seitenvergleich dentogener Ursachen der erkrankten mit der gesunden Seite........86
1.3 Kombinationen dentogener Ursachen auf der Seite der Mykose und auf der
 gesunden Seite..88
1.4 Röntgendichte Einschlüsse..89
1.5 Dentogene Ursachen auf der gleichen Seite wie metalldichte Verschattung.............91
2 Kein Fungus Ball der Kieferhöhlen...91

XIV DISKUSSION..93

XV KONKLUSION..98

XVI LITERATURVERZEICHNIS..99
Abbildungsnachweis

Abbildung 1 Maxilla, rechts

Abbildung 2 Nasenhauptsöhle von lateral

Abbildung 3 Laterale Nasenwand, koronarer Schnitt

Abbildung 4 Orbita, Nasenhöhle mit Nasennebenhöhlen: Frontaler Schnitt durch die Orbita

Abbildung 5 Sekretbahnen vom Kieferhöhlenboden zum Ostium

Abbildung 6 Aspergilluskolonie mit typischen septierten, verzweigten Hyphen (PAS-Färbung, 400fache Vergrößerung)
www.uniklinik-ulm.de/chronisch-kalzifizierendes-aspergillom 05.10.2009
Abbildung 7 Endoskopisch/intraoperatives Bild einer Aspergillus Mykose, Kieferhöhle links

Ass.-Prof. Priv.-Doz. Dr.med.univ. Peter Valentin Tomazic (Universitätsklinik für Hals-, Nasen-, Ohren Graz)

Abbildung 8 Entfernter Fungus Ball der Kieferhöhle

Eur Arch Otorhinolaryngol. 2007 May;264(5):461-70.

Abbildung 9 Mykose des Sinus maxillaris links, mit nahezu metalldichter Verkalkungsstruktur, kraniale Spiegelbildung

Ass.-Prof. Priv.-Doz. Dr.med.univ. Peter Valentin Tomazic (Universitätsklinik für Hals-, Nasen-, Ohren Graz)

Abbildung 10 Ursachen der odontogenen Sinusitis maxillaris (Übersicht)

Abbildung 11 NNH-CT in koronarer Schichtführung; Wurzelbehandelter Zahn 26 mit Überfüllung der palatalen Wurzel in die Kieferhöhle

Ass.-Prof. Priv.-Doz. Dr.med.univ. Peter Valentin Tomazic (Universitätsklinik für Hals-, Nasen-, Ohren Graz)

Abbildung 12 Zahnlückenbuchen zwischen Wurzeln und bei fehlenden Zähnen

Abbildung 13
Odontogene Zyste des Oberkiefers

Reinert S, Lindorf HH. Chirurgie der odontogenen Kieferhöhlenerkrankungen
Mund-, Kiefer- und Gesichtschirurgie, 2012, S. 121-145

Abbildung 14
Pseudozyste im Recessus alveolaris (endoskopisch assistierte Entfernung)

Reinert S, Lindorf HH. Chirurgie der odontogenen Kieferhöhlenerkrankungen
Mund-, Kiefer- und Gesichtschirurgie, 2012, S. 121-145

Abbildung 15
Mukoretentionszyste der Kieferhöhlenschleimhaut (endoskopisch assistierte Entfernung)

Reinert S, Lindorf HH. Chirurgie der odontogenen Kieferhöhlenerkrankungen
Mund-, Kiefer- und Gesichtschirurgie, 2012, S. 121-145

Abbildung 16
Knochendeckelmethode nach Lindorf

Reinert S, Lindorf HH. Chirurgie der odontogenen Kieferhöhlenerkrankungen
Mund-, Kiefer- und Gesichtschirurgie, 2012, S. 121-145

Abbildung 17
Dehnungslappenplastik nach Rehrmann

Reinert S, Lindorf HH. Chirurgie der odontogenen Kieferhöhlenerkrankungen
Mund-, Kiefer- und Gesichtschirurgie, 2012, S. 121-145
Diagrammregister

Diagramm 1 Häufigkeit eines Fungus Ball der Kieferhöhlen innerhalb der operativ behandelten Patienten

Diagramm 2 Seitenverteilung der erkrankten Kieferhöhlen

Diagramm 3 Dentogene Ursachen

Diagramm 4 Seitenvergleich dentogener Ursachen

Diagramm 5 Auftreten metalldichter Verschattungen

Diagramm 6 Seitenverteilung der metalldichten Verschattung

Diagramm 7 Übereinstimmung dentogener Ursachen mit metalldichter Verschattung

Diagramm 8 Diagnosen der Patienten ohne Kieferhöhlen-Mykose
Tabellenverzeichnis

Tabelle 1 Seitenvergleich dentogener Ursachen

Tabelle 2 Kombinationen dentogener Ursachen
Zusammenfassung

Zielsetzung:

Fungus Balls sind eine häufige Erkrankung der Nasennebenhöhlen, wobei der Sinus maxillaris am häufigsten betroffen ist. Nachdem die Pathophysiologie der Kieferhöhlen-Mykose ungeklärt ist, war es das Ziel dieser Studie, dentogene Faktoren der Oberkieferzähne von 1-8 jener Patienten, die wegen eines Fungus Ball der Kieferhöhle operativ behandelt wurden zu erheben und mit dem Auftreten eines Fungus Ball in Zusammenhang zu bringen.

Patienten und Methodik:

Resultate:

Bei 98/102 (96.1%) Patienten wurden 157 dentogene Faktoren auf der Seite des Pilzballes festgestellt. Die kontralaterale, gesunde Seite wies 125 dentogene Faktoren auf. Bei 4/102 (3.9%) Patienten konnten keinerlei dentogene Faktoren oder Kalzifikationen im Nasennebenhöhlen-CT gefunden werden. Das Vorliegen dentogener Faktoren, unabhängig ihrer Anzahl pro Patient, war signifikant assoziiert mit einer Kieferhöhlen-Mykose im Vergleich mit der gesunden Seite. (p=0.024, Chi-Quadrat Test, OR 2.72 [95% CI 1.02-7.23]).

Konklusion:

Unabhängig von deren Art stehen dentogene Faktoren in engem Zusammenhang mit dem Auftreten eines Fungus Ball des Sinus maxillaris; die Anzahl dentogener Faktoren eines einzelnen Patienten beeinflusst die Entwicklung einer Kieferhöhlen-Mykose jedoch nicht signifikant. Implantate fanden sich nur bei 7 Patienten, hier bedarf es weiterer Studien. Patienten mit den Kieferhöhlenboden penetrierenden dentogenen Faktoren, müssen engmaschig kontrolliert sowie über das erhöhtes Risiko einen Fungus Ball zu entwickeln informiert werden.
Abstract

Introduction:

Fungus balls are a common disease of the paranasal sinuses, where the maxillary sinus is involved in the majority of cases. As its pathophysiology remains unclear, the purpose of this study was to analyse the dental chart of the maxillary lateral tooth area from patients treated with maxillary sinus fungus balls and to see whether fungus balls correlate with the presence of dentogenic factors.

Material and Methods:

A retrospective analysis was conducted for patients diagnosed with a maxillary sinus fungus ball between January 2000 and December 2013 at the ENT Medical University of Graz. Patients’ charts were reviewed for diagnosis, gender and age. Paranasal sinus CT scans were reviewed for calcifications/opacifications and dentogenic factors present on the side of the fungus ball and the healthy side.

Results:

In 98/102 patients (96.1%) 157 dentogenic factors could be identified on the side affected by a fungus ball. On the contralateral healthy side 125 dentogenic factors could be seen. In 4 (3.9%) of the patients no dentogenic pathology or calcifications/opacifications could be identified on the CT scan. The presence of dentogenic factors (regardless of number) was significantly associated with a fungus ball compared to the healthy side (p=0.024, Chi-square test, OR 2.72 [95% CI 1.02-7.23]).

Conclusion:

Dentogenic factors regardless of type correlate significantly with the presence of maxillary sinus fungus ball. The number of dentogenic factors in a single patient does not significantly influence the development of fungus balls. We found only 7 patients with dental implants, further investigations will be necessary. After diagnosis of dentogenic pathology in penetrated maxillary sinus floors patients have to be closely monitored and informed about the higher risk of developing a fungus ball.
I EINLEITUNG

1. THEMATIK UND HINTERGRUND

Pilzbedingte Sinusitiden kommen schätzungsweise bei ungefähr 10% aller Patienten vor, die operative Eingriffe der Nase und Nasennebenhöhlen durchführen ließen; bei 13.5-28.5% aller entzündlichen Erkrankungen des Sinus maxillaris handelt es sich um reine- oder bakteriell superinfizierte Pilzinfektionen.\[1\]

Kieferhöhlen-Mykosen oder Fungus Balls sind eine häufige Erkrankung der Nasennebenhöhlen, hauptsächlich sind der Sinus maxillaris (94%) und der Sinus sphenoidalis (4-8%) betroffen, wobei der Fungus Ball vorwiegend einseitig auftritt. Der Sinus ethmoidalis, frontalis oder mehrere Sinus zugleich sind sehr selten betroffen.\[1\] \[2\]

Die Patienten befinden sich meist im 60. Lebensjahr und darüber, mit einer Bevorzugung des weiblichen Geschlechtes. Fälle von erkrankten Kindern sind bisher nicht bekannt.\[1\] \[2\]

Im Nasennebenhöhlen-CT findet sich in 90% der Fälle eine total oder subtotal heterogen verschattete Kieferhöhle, in 10% ist der Sinus homogen verschattet. Weiter finden sich in 45-76% der homogen oder heterogen verschatteten Kieferhöhle nahezu metalldichte Einschlüsse.\[1\]

In der Literatur finden sich verschiedene, oftmals verwirrende Einteilungen mykotischer Erkrankungen der Nase und Nasennebenhöhlen. Grundsätzlich können zwei pilzassozierte Krankheitsbilder im Nasennebenhöhlenbereich voneinander unterschieden werden:

- invasive Mykosen, sie betreffen immunsupprimierte Patienten und dringen in das umliegende Gewebe ein

- nichtinvasive Mykosen, sie betreffen vorwiegend immunkompetente, ansonsten gesunde Patienten und infiltrieren die Sinusschleimhaut nicht.\[1\] \[2\] \[3\]

Zu den nichtinvasiven Mykosen zählt die Pilzkugel (Fungus Ball) der Kieferhöhlen und wird in der vorliegenden Arbeit behandelt und aus didaktischen Gründen so benannt.

„Mycetom“ bezeichnet eine chronische, lokal invasive Infektion der Subkutis von Händen und Füßen, mit möglicher Ausbreitung in angrenzende Strukturen.

„Aspergillose“ ist eine veraltete Bezeichnung für jegliche Form von Erkrankungen der Nasennebenhöhlen verursacht durch den Schimmelpilz Aspergillus.

Zudem existiert eine dritte, gemischte Theorie die beide Entstehungsmechanismen kombiniert. [1][5]

Zu oben genannten Theorien tritt der Einfluss von Schwermetallen wie Zinkoxid, welches in verschiedenen Wurzelfüllmaterialien enthalten ist hinzu. Zinkoxid kann einerseits in gelöstem Zustand das Wachstum von Aspergillus fumigatus fördern und andererseits die mukoziliare Clearance der Sinusschleimhaut behindern sodass die Pilzsporen im Sinus gefangen bleiben. [1][4][5][6][7][8][9]

Historischer Überblick

Sinus maxillaris

1612 beschrieben die beiden Anatomen Julius Casserius und Ingrassius aus Padua die Kieferhöhlen die fortan als Antrum Casserii bezeichnet wurden. [8] [10]

1651 beschrieb Nathaniel Highmore in seinem Lehrbuch für Anatomie erstmals genauer die klinische und anatomische Bedeutung der Kieferhöhlen. In den folgenden Jahrzehnten wurde die Kieferhöhle als Antrum Highmori bezeichnet. [8] [10]

Seit dieser Zeit ist die Kieferhöhle bei der Behandlung von Oberkieferzähnen von großer Bedeutung, da der Alveolarknochen der den Boden der Kieferhöhle bildet, im Bereich der
Zähne 3-8 nur wenige mm dick bis papierdünn sein kann oder die Zahnwurzeln sind überhaupt nur von der Schneider’schen Membran der Kieferhöhle bedeckt. [8]

Mykosen

Seit dieser Zeit wurden zunehmend größere Fallzahlen, hauptsächlich verursacht durch Aspergillus fumigatus, seltener von A. flavus und A. niger, in industrialisierten mitteleuropäischen Ländern wie Deutschland, Frankreich, Schweiz und Österreich publiziert. Weder angloamerikanische noch skandinavische Länder berichten über größere Patientenzahlen. [4][6][12]

Chirurgie der Nasennebenhöhlen

2. ZIEL DER ARBEIT

Zusätzlich soll, zu oben angeführten Erkenntnissen, die Pathogenese und -physiologie dieser Erkrankung beleuchtet werden. Chronische, meist einseitige und therapieresistente Sinusitiden, vor allem bei im NNH-CT eindeutig zu erkennenden metalldichten Einschaltungen in der Kieferhöhle, sollen von zahnmedizinischer Seite ebenfalls beleuchtet werden um gegebenenfalls eine Therapie oder eine interdisziplinäre Zusammenarbeit einleiten zu können.

Nach eingehender Literaturrecherche ist es unseres Wissens nach die einzige Studie dieser Art, die sämtliche potentielle dentogene Faktoren für die Entstehung eines Fungus Ball der Kieferhöhlen wie Zahneextraktionen, Wurzelkanalbehandlungen, überfüllte Wurzelkanalbehandlungen, Wurzelreste, apikale Parodontitiden, Zysten sowie Implantate berücksichtigt.
II ANATOMIE UND PHYSIOLOGIE

1 Anatomie des Oberkiefers

Der Oberkiefer, Maxilla, lässt sich in einen hohlen, paarig angelegten Körper, Corpus, sowie in seine 4 Knochenfortsätze, den Processus zygomaticus, den Processus frontalis, den Processus palatinus und den Processus alveolaris unterteilen.

Abb. 1: Maxilla, rechts

Der Processus zygomaticus artikuliert seitlich mit dem Os zygomaticum.

Der Processus frontalis grenzt oben an das Stirnbein, hinten an das Tränenbein und vorne oben an das Nasenbein.

Der nach abwärts gerichtete, bogenförmige **Processus alveolaris** trägt die Zähne.

Die **Kieferhöhle** ist ein pneumatisierter Anhang der Nase in der Maxilla, an der wir 4 Flächen unterscheiden:

Eine Facies anterior mit den Juga alveolarias, eine Facies nasalis mit dem Hiatus maxillaris zur Kieferhöhle, eine Facies orbitalis sowie eine Facies infratemporalis. [16]

2 Anatomie der Nasenhöhle und Nasennebenhöhlen

2.1 Die Nasenauhthöhle

Im Inneren der Nase befindet sich die Nasenauhthöhle, die von der senkrecht stehenden Nasenscheidewand, Septum nasi, in eine rechte und linke Nasenhöhle unterteilt wird. Die mediale Nasenwand wird jeweils vom Septum nasi gebildet. Wir unterscheiden einen vorderen knorpeligen Teil (Lamina quadrangularis) und einen hinteren knöchernen Teil, der aus der Lamina perpendicularis des Siebbeins und dem Vomer besteht.

Die **Begrenzungen der Nasenhauhthöhle** sind anterior die Nasenklappe, welche die engste Stelle der Nase darstellt; posterior die Choanen mit Mündung in den Nasenrachenraum; kranial das Nasenbein, die Lamina cribrosa des Siebbeins und der Keilbeinkörper; kaudal der harte Gaumen; medial das Septum nasi und schließlich lateral die laterale Nasenwand mit ihren 3 Nasenmuscheln, Conchae nasales superior, media et inferior. Zusätzlich kann eine Concha nasalis suprema, welche dorsosuperior der obersten Nasenmuschel gelegen ist, ausgebildet sein. Entsprechend der Muscheln unterscheidet man einen oberen, mittleren und unteren Nasengang, Meatus nasi. [17]
Die Nasennebenhöhlen sind paarig angelegte, durch Ostien miteinander kommunizierende Hohlräume, in den angrenzenden Schädelknochen. Zu den Nasennebenhöhlen zählen die Kieferöhle, Sinus maxillaris; die Keilbeinhöhle, Sinus sphenoidalis; die Stirnhöhle, Sinus frontalis sowie die vorderen und hinteren Siebbeinzellen, Cellulae ethmoidales.

An die Nasenhaupthöhle grenzen folgende Strukturen:

Die hinteren Siebbeinzellen, Cellulae ethmoidales grenzen medial an die obere Muschel; das Ostium der Keilbeinhöhle, Recessus sphenoehtmoidalis befindet sich hinter derselben.

Der Ausflusstrakt der Stirnhöhle mündet im Hiatus semilunaris, dieser liegt unter der mittleren Muschel. Ein Ductus oder Canalis nasofrontalis per se existiert nicht. Das Infundibulum ethmoidale liegt hinter dem Hiatus semilunaris und über diese Vertiefung erfolgt auch der Abfluss aus der Kieferöhle über das Kieferhöhlenostium.

Die vorderen Siebbeinzellen sowie das sekundäre Ostium der Kieferöhle münden ebenso unter der mittleren Muschel.

Der Tränennasengang, Ductus nasolacrimalis mündet unter der unteren Muschel.

Als „ostiomeatale Einheit“ wird die Kommunikation zwischen den Ausführungsgängen der Nasennebenhöhlen (Stirn-, Kiefer- und vorderes Siebbein), den Nasengängen und der Nasenhaupthöhle im Bereich der lateralen Nasenwand bezeichnet.

Eine sog. Concha bullosa finden wir vor, wenn die mittlere Muschel pneumatisiert und somit vorgewölbt die Ostien der Nebenhöhlen einengen kann.

Die Bulla ethmoidalis ist eine sehr große vordere Siebbeinzelle, die sich in die Nasenhöhle vorwölbt und dadurch die mittlere Muschel zum Septum drängt. [17]
Abbildung 2: Nasenhaupthöhle von lateral a) Regio olfactoria mit Nasenmuscheln b) Ausführungsgänge der Nasennebenhöhlen, Muscheln entfernt

Abbildung 3: Laterale Nasenwand mit ostiomeataler Einheit, koronarer Schnitt
2.2 Die Nasennebenhöhlen

Die Stirnhöhle, Sinus frontalis, ist paarig angelegt jedoch oft unterschiedlich groß. Es finden sich Buchten und Kammern, das Septum interfrontale teilt die Stirnhöhle.

Siebbeinzellen, Cellulae ethmoidales, bilden das so genannte Siebbeinlabyrinth, und bestehen aus etwa 8-10 Zellen. Sie grenzen unten lateral an die Kieferhöhle, lateral an die Orbita (Lamina papyracea), medial an den oberen Teil der lateralen Nasenwand, kranial an die Schädelbasis (Siebbeindach) und an die Stirnhöhle bzw. den Rezessus frontalis.

Die Keilbeinhöhle, Sinus sphenoidalis, ist paarig angelegt, durchtrennt von einem Septum und meist unterschiedlich groß. Kranial grenzt sie an die Sella turcica (Hypophyse), dorsal befindet sich der Clivus, kaudal grenzt sie an das Rachendach und ventral an die obere Nasenhaupthöhle. Das Ostium mündet an der Vorderwand hinter der oberen Muschel.

Die Kieferhöhle, Sinus maxillaris, ist paarig angelegt und die größte Nasennebenhöhle. Ihre Basis bildet die mediale, nasale Fläche. [17]

3 Spezielle Anatomie der Kieferhöhle

Die Kieferhöhle, Sinus maxillaris, hat die Form einer liegenden Pyramide. Ihr Volumen beträgt ca.14.57 ml, bei Männern etwas mehr als bei Frauen. [18]

Sie reicht bei Erwachsenen normalerweise von der Hinterwand der Maxilla bis distal der Canini. [8]

Die Basis der Pyramide ist nach medial zur Nasenhaupthöhle gerichtet, an der lateralen Wand der Nasenhaupthöhle befindet sich auch das natürliche Ostium; ihre Spitze befindet sich im Processus zygomaticus des Oberkiefers.

Der Kieferhöhlenboden wird vom Oberkiefer-Alveolarfortsatz gebildet und verläuft von vorne nach hinten aufsteigend. Er ist ventral dicker als dorsal, was dazu führen kann, dass der Knochen im Bereich der Wurzelspitzen sehr dünn ist. [18]
Zu etwa 50% finden wir im Bereich der Molaren und Prämolaren Ausbuchtungen in den Processus alveolaris, Recessus alveolares sowie sog. Underwood – Septen. [8][18]

Mit zunehmendem Alter atrophiert der Alveolarknochen auch im Bereich der Wurzelspitzen, sodass diese nur noch durch eine von Schleimhaut (Schneider’sche Membran) bedeckte hauchdünne Knochenlamelle von der Kieferhöhle getrennt sind. In manchen Fällen fehlt diese dünne Knochenlamelle, die Wurzeln sind nur noch von Kieferhöhlenschleimhaut bedeckt. [8][19]

Die vordere und hintere Kieferhöhlenwand bildet das Os maxillare, der Knochen ist hier dicker. [18]

Die hintere Kieferhöhlenwand ist zum Tuber maxillae hin ausgebuchtet. [16]

Das Dach der Kieferhöhle wird vom Orbitaboden gebildet und ist sehr dünn.

Das Ostium des Sinus maxillaris kommuniziert mit dem mittleren Nasengang über das Infundibulum ethmoidale, in welches es trichterförmig mündet ebenso wie der Ductus nasofrontalis. [18]

Äste der Arteria maxillaris versorgen die Schleimhaut der Kieferhöhle, der venöse Abfluss erfolgt über die Vena maxillaris. Aufgrund ihrer Verbindung zum Plexus pterygoideus, der im duralen Sinus der Schädelbasis mündet, kann es durch eine Sinusitis maxillaris zu einer Sinusthrombose und meningitis kommen.

4 Physiologie der Nasenhöhle und Nasennebenhöhlen

Die Nase ist der Sitz des Geruchorgans (Regio olfactoria), bildet den Hauptweg für die Atemluft und ist auch an der Sprachbildung beteiligt.

Die Schleimhaut der Nasenhauptöhle im unteren und mittleren Teil besteht aus einem mehrschichtigen Flimmerepithel mit Schleimdrüsen (Regio respiratoria). Der Flimmerstrom ist zum Rachen hin gerichtet. Der Hauptluftstrom gelangt bei der Einatmung zwischen der unteren und mittleren Muschel nach hinten zur Choane. Hierbei wird er gereinigt (Nasenhaare), angefeuchtet, und auf 32-34°C erwärmt. Die Blutfüllung der
Nasenschleimhaut hat Einfluss auf die Durchgängigkeit der Nasenhaupthöhle für den Luftstrom. Der Sekretfilm erfüllt zudem durch verschiedene Enzyme, Mediatoren und Immunglobuline eine Abwehrfunktion.

Die Nase und Nasennebenhöhlen, spielen als Resonanzkörper vermutlich eine Rolle bei der Phonation.

Die Schleimhaut der Nasennebenhöhlen ist mit einem dünnen Flimmerepithel bedeckt, das ebenso wie das Flimmerepithel der Nasenhaupthöhle, einen Flimmerstrom besitzt, der zu den Ostien hin gerichtet ist. {17}

4.1 Die Funktion der Nasennebenhöhlen

Verschiedene Theorien werden diskutiert (Bailey 1998):

- Befeuchtung und Erwärmung der Atemluft,
- Vergrößerung der olfaktorischen Membran,
- Gewichtsreduktion des knöchernen Schädels,
- Regulation des intranasalen Druckes,
- Resonanzräume zur Stimmbildung,
- Auffangen von Erschütterungen des Kopfes. {8}
4.2 Der mukoziliare Transport

Die Aktivität der Zilien sowie die Sekretion der Drüsen und Becherzellen sind die Grundlage für den mukoziliären Transport. Ein Sekretstau kann durch größere Schleimhautläsionen oder Narben auftreten, kleinere Defekte sind nicht wesentlich beeinträchtigend. \[13\][21]

Abb.5: Sekretbahnen vom Kieferhöhlenboden zum Ostium
III SINUSITIS MAXILLARIS

Die Durchgängigkeit der ostiomeatalen Einheit ist für die Physiologie der Nasennebenhöhlen von großer Bedeutung, da hier der gemeinsame Sekretabfluß von Stirn- und Kieferhöhlen über die vorderen Siebbeinzellen in die Nasenhaupthöhle stattfindet.\[18\][22]

In westlichen Industrieländern ist die Inzidenz der chronisch-entzündlichen Erkrankungen der Nasennebenhöhlen, mit einer Prävalenz von etwa 14% der Bevölkerung im Ansteigen begriffen. Da bei Entzündungen der Nasenschleimhaut (Rhinitis) zu 87% die Schleimhaut der Nasennebenhöhlen mitbetroffen ist, wird dieses Krankheitsbild auch als Rhinosinusitis bezeichnet; in der vorliegenden Arbeit wird zwischen einer Sinusitis maxillaris (im eigentlichen Sinn) und einer denzogenen Sinusitis maxillaris unterschieden. Die odontogene Sinusitis maxillaris stellt, aufgrund der anatomischen Nähe des Oberkiefer-Seitenzahnbereiches zur Kieferhöhle, eine ätiologische Sonderform dar.\[13\][17][22][23]

Die Stadieneinteilung gilt für Sinusitiden rhinogenen, als auch für Sinusitiden odontogenen Ursprungs:

Die Symptomatik der akuten Sinusitis besteht weniger als vier Wochen, sie entsteht meist auf dem Boden eines akuten viralen Infekts der Nasenschleimhaut. Zu den Symptomen zählen vorrangig Kopfschmerzen im Bereich der Stirn und der Augen, Schmerzen beim nach vorne Beugen, ein Druckgefühl und Klopfpempfindlichkeit der betroffenen Seite sowie eine erschwerte Nasenatmung mit schleimiger, später dann eitriger Absonderung.

Die Symptomatik der chronischen Sinusitis besteht länger als zwölf Wochen, sie tritt mit einer Inzidenz von 5-10% auf, die Siebbeinzellen sind am häufigsten betroffen, danach folgen die Kieferhöhlen, die Stirn-, sowie die Keilbeinhöhle. Die chronische Sinusitis verläuft insgesamt schwächer als die akute Form, zu etwa 70% stehen ein Dauerschnupfen mit erschwerner Nasenatmung sowie Schmerzen im Kopf- und Gesichtsbereich im Vordergrund. Seröse oder auch eitrige Abgänge von Sekret im Nasenrachen verursachen Bronchitis und Laryngitis. Kennzeichnend ist außerdem eine Verminderung bis hin zum totalen Verlust der Riechfähigkeit.
Wir unterscheiden außerdem noch eine allergische und eine nicht allergische Form als Ursachen für die chronische Sinusitis. Die Ätiologie der eosinophilen chronischen Sinusitis ist noch nicht restlos geklärt.

Bei einer Pansinusitis ist die Schleimhaut aller Nebenhöhlen betroffen, meist betrifft es aber den Sinus maxillaris und das Os ethmoidale. [13] [17] [22] [23]

Vier Faktoren haben Einfluss auf die Pathogenese der Sinusitis maxillaris

1. Die Durchgängigkeit der Ostien
2. Die Zilienfunktion
3. Die Beschaffenheit des Nasensekrets (serös-eitrig)
4. Die Ventilation

Auch immunologische Ursachen spielen in der Pathogenese der Sinusitis maxillaris eine Rolle. [8] [18]

1 Sinusitis maxillaris im eigentlichen Sinn

Virale Infektionen (90%) der oberen Atemwege können auf die Kieferhöhle übergreifen und zu einer Entzündung der Sinusschleimhaut führen. Die ödematöse Schwellung behindert den Sekretabfluß, es kommt zum Rückstau und in weiterer Folge kann es zu einer bakteriellen Superinfektion kommen.

Auch eine mechanische Obstruktion im Bereich der ostiomeatalen Einheit, die eine Drainage und Ventilation der Kieferhöhle behindert, sowie eine Deviation der Nasenscheidewand, eine Concha bullosa oder eine infraorbitale (Haller’sche) Zelle können zu einer Sinusitis maxillaris führen. [13] [17] [22] [23] [24]

Die Sinusitis maxillaris kommt nach Wassmund mit 68%:32% ungefähr doppelt so häufig, wie odontogene Kieferhöhlenentzündungen vor. [18]
2 Dentogene Sinusitis maxillaris

Etwa 10-40% aller Sinusitiden sind dentogenen Ursprungs. Die dentogene Sinusitis maxillaris tritt meist einseitig auf, die Symptomatik umfasst starke, in Gesicht und Stirn ausstrahlende Schmerzen die auch einer Pulpitis ähnlich sein können. Bei kaufunktioneller Belastung der betroffenen Seite verstärken sich die Beschwerden und es kann somit zur Fehlbelastungen der Kiefergelenke mit entsprechender Symptomatik kommen. Auch die Fossa canina sowie der laterale Tuberbereich können Druck- und Klopfschmerzhaft sein.

Endoskopisch lässt sich eine einseitige Schwellung der Nasenschleimhaut mit eitrigem Sekret im mittleren Nasengang feststellen. [13] [18] [19] [25]

2.1 Pathophysiologie

In die Kieferöhle luxierte Wurzelreste (auch eingehielte „Radices relictae“), Fremdkörper sowie impaktierte Zähne können ebenso wie infizierte radikuläre oder follikuläre Zysten eine Entzündungsursache darstellen. [9] [13] [18] [19] [24] [26]

Initial handelt es sich bei einer dentogenen Sinusitis maxillaris um eine zirkuläre Entzündungsreaktion der Kieferöhenschleimhaut im Bereich des Recessus alveolaris. In diesem Stadium kann die Schleimhaut spontan ausheilen, vorausgesetzt der entzündliche Reiz wird entfernt oder kann durch das Ostium abtransportiert werden. Ist dies jedoch nicht der Fall, entwickelt sich eine entzündungsbedingte ödematöse Schwellung der Mukosa mit Behinderung von Ventilation und Drainage aufgrund des blockierten Ostium maxillare; in diesem Stadium sind weitere Maßnahmen von Seiten des Zahnarztes oder Kieferchirurgen unumgänglich. [9] [13] [18] [24] [26]

2.2 Zahnärztliche Befunderhebung

Im Zuge der manuellen **Palpation** untersuchen wir, ob ex- oder enoral eine Druckempfindlichkeit oder Schmerzhaftigkeit im Bereich des Foramen infraorbitale, der fazialen Kieferhöhlenwand, am harten Gaumen und im Vestibulum am Ansatz des Jochbogens besteht. Es werden auch immer die regionären Lymphknoten abgetastet, eine druckdolente Vergrößerung zeigt ein entzündliches Geschehen an wobei eine Druckindolenz auf einen Tumor hinweist.

Die **Vitalitätskontrolle** der Oberkieferzähne im Bereich 3-8 erfolgt mittels eines CO₂-Schnees, mit dem wir einen Kältereiz setzen. Reagiert ein Zahn überschießend, ist er wahrscheinlich pulpitisch; reagiert er überhaupt nicht, ist er entweder devital mit einer möglichen Parodontitis apicalis oder die Wurzelkanäle sind obliteriert aufgrund des fortgeschrittenen Alters des Patienten. In beiden Fällen ist ein Kleinbild des betreffenden Zahnes anzufertigen um Auskunft über den periapikalen Bereich und mögliche Karies zu erhalten.

Bei der **vertikalen Perkussion** überprüfen wir ob der betreffende Zahn klopfschmerzhaft reagiert. Dies ist bei einer apikalen Parodontitis der Fall oder auch bei einer akuten Sinusitis im gesamten Seitzahnbereich der erkrankten Seite. Auch hier werden wir ein Kleinbild anfertigen.

Die **horizontale Perkussion** des Oberkieferseitenzahnbereichs gibt Auskunft über parodontale Erkrankungen des klopfschmerzhaft reagierenden Zahnes. Anschließend werden mit einer Knopfsonde die **Sondierungstiefen** sowie eine etwaige
Blutungsneigung ermittelt. Ein parodontal gesunder Zahn besitzt eine Sondierungstiefe von < 3 mm, die Gingiva blutet nicht auf eine Sondierung, er zeigt weder Zahnstein noch überstehende Füllungsränder welche beide einen entzündlichen Reiz für die angrenzende Gingiva darstellen.

Im Gegensatz dazu weist ein parodontal erkrankter Zahn Sondierungstiefen von > 3,5 mm auf, eine Blutung auf Sondierung sowie Zahnstein und überstehende Füllungsränder sind möglich.

Die **Parodontitis marginalis profunda** stellt ebenfalls eine mögliche Ursache für die Sinusitis maxillaris dar, sie weist Sondierungstiefen von mehreren Millimeter auf, der Zahn ist gelockert und es blutet auf Sondierung.

Bei einem **Parodontalabszess** entleert sich Eiter bei der Sondierung, die Gingiva ist ödematös geschwollen, das Punctum maximum befindet sich koronal über dem Zahnfleischrand.

Der Ausschluss einer **Mund-Antrum-Verbindung** erfolgt durch den Nasenblasversuch und die vorsichtige Sondierung mit einer Knopfsonde. Der Nasenblasversuch kann auch falsch negativ sein wenn sich die Kieferhöhlenschleimhaut über die Verbindung zur Mundhöhle legt. Frische Extraktionsalveolen, Zahnlücken sowie ein völlig zahnloser Seitenzahnbereich werden auf mögliche Fistelungen zur Kieferhöhle untersucht.

Die **Spülung der Kieferhöhle** mit physiologischer Kochsalzlösung gibt Auskunft über die Beschaffenheit des über die Nase abfließenden Sekretes und die Durchgängigkeit des Ostium maxillare; sie erfolgt transalveolär über eine bestehende Mund-Antrum-Verbindung, bei vornüber geneigtem Kopf des Patienten.

Seröses oder muköses Sekret ist ein Hinweis auf eine chronische Entzündung der Kieferhöhle, als Ursache kommen Fremdkörper, nicht infizierten Zysten oder eine chronische Parodontitis apicais in Frage.

Eitriges Sekret ist ein Hinweis auf eine akute Sinusitis maxillaris aufgrund einer Mund-Antrum-Verbindung, einer in die Kieferhöhle fortgeleiteten Parodontitis apicais (Endo-antrales-Syndrom) oder infizierter Zysten; treten massive Eitermassen aus der Nase aus und lässt sich eine einseitige Eiterstraße an der hinteren Pharynxwand erkennen, so kann ein Kieferhöhlenempyem vorliegen. [8][18][27][28][29]
Übelriechende bräunliche bis grau-grüne Absonderungen von bröckeliger oder sandiger Konsistenz sind charakteristisch für eine Kieferhöhlen-Mykose. Eine ständig auftretende Kakosmie ist ebenfalls ein Hinweis auf einen Pilzball (Fungus Ball) der Kieferhöhlen. [6]

2.3 Röntgendiagnostik

In der zahnärztlichen Diagnostik werden zunächst ein Orthopantomogramm (OPG) sowie Kleinbildaufnahmen devitaler Zähne angefertigt. Das OPG gibt als Übersichtsröntgen Informationen über die Lage der Zähne zueinander, kariöse- und wurzelbehandelte Zähne, apikale Parodontitiden und deren mögliche Ausdehnung in die Kieferhöhle sowie über parodontalen Knochenabbau. Ebenfalls gut im OPG zu lokalisieren sind scharf begrenzte, meist basal gelegene Zysten. Die Kleinbildröntgenaufnahmen gibt Aufschluss über mögliche apikale Entzündungsherde, die bevorzugt devitale Zähne betrifft.

Das OPG gibt außerdem Hinweise auf zentrale oder basal in der Kieferhöhle gelegene Fremdkörper, wie in die Kieferhöhle luxierte Wurzelspitzen, überpresstes Wurzelkanalfüllmaterial sowie Implantate. [18] [26] [27] [29]

Mit einem konventionellen, in frontaler Projektion durchgeführtem NNH-Übersichtsröntgen lassen sich Zysten, Entzündungen sowie Verschattungen und Spiegelbildungen darstellen; aufgrund ihrer geringen Sensitivität und Spezifität werden sie jedoch immer weniger durchgeführt. [20]

2.4 Computertomographie

Die Computertomographie zeichnet sich durch eine hervorragende Darstellung der Knochen und Weichteile aus, sie liefert im Gegensatz zum NNH-Übersichtsröntgen überlagerungsfreie Schnittbilder in koronarer und axialer Schichtführung. Indiziert ist ein NNH-CT für die Diagnostik bei akuten und chronischen Sinusitiden sowie zur Operationsplanung bei Tumoren oder Frakturen. In erster Linie werden koronaren Schichten angefertigt, bei speziellen Fragestellungen wie Überlagerungen durch Zahnartefakte wird zusätzlich eine Spiral-CT in axialer Schichtung durchgeführt. [20]
Entzündungen zeigen zu Beginn einer pathologischen Veränderung eine Mukosaverdickung auf, die als wandständige Weichteilverschattung im CT sichtbar ist; sie sind radiologisch jedoch nicht von einer Allergie zu unterscheiden. Akute Entzündungen können durch eine Spiegelbildung gekennzeichnet sein, die durch eine Luftbildung über oder innerhalb der weichteildichten Verschattung der Kieferhöhle entstanden ist. Ebenso kann die akut entzündete Kieferhöhenschleimhaut auch als homogene, vollständige Einschattung erscheinen. Chronische Entzündungen sind neben einer Verdickung der Mukosa, durch Polypen (Mukoretentionszysten) der Kieferhöhle sowie durch eine Sklerosierung der knöchernen Begrenzungen (chronische ostitische Mitbeteiligung) gekennzeichnet.\[20\]

Mukoretentionszysten können ebenso wie Polypen das Ostium maxillare blockieren, sie entstehen durch eine Erweiterung der Schleimdrüsen-Ausführungsgänge in unmittelbarer Nähe zum Ostium; dort sind sie auch häufig zu finden.

Mund-Antrum-Verbindungen (Oroantrale Fistel) sind meist nur klinisch zu diagnostizieren, da die Ränder der Fistel unregelmäßig sind und die gleiche Röntgendichte wie das Weichgewebe aufweisen; im CT kann eine Fistel als Unterbrechung des knöchernen Sinusbodens zu erkennen sein.

Ein Pilzball (Fungus Ball) erscheint als subtotale oder totale Verschattung der Kieferhöhle mit polypös verdickter Schleimhaut und gelegentlich zentral gelegenem, punktförmigen Einschlüssen, die vermutlich überpresstem Wurzelkanalfüllmaterial entsprechen.\[18\] [27] [29]
IV MYKOSEN DER NASENNEBENHÖHLEN

Der **Schimmelpilz Aspergillus** kommt ubiquitär, meist in verwesendem Material pflanzlicher Herkunft wie Futtermittel, Nüsse oder Getreide, oft vermischt mit Staub vor. Die Sporen werden aerogen verbreitet, eingeatmet und gelangen so über die Nase in die Lunge und die Nasennebenhöhlen; dort bleiben sie an der Schleimhaut haften und werden mit dem Flimmerstrom zum Rachen transportiert wo sie verschluckt werden. [6] [11] [31]

Täglich kann der Mensch in Abhängigkeit von Aufenthaltsort und Atemfrequenz bis zu 1,7 Millionen Pilzsporen einatmen die an sich noch keinen pathologischen Befund darstellen. [3]

1 Einteilung der Mykosen

Grundsätzlich können zwei pilzassoziierte Krankheitsbilder im Nasennebenhöhlenbereich voneinander unterschieden werden:

- die **invasiven Mykosen** mit der granulomatösen-indolenten, der chronischen und der akut-fulminanten Form,

- die **nichtinvasiven Mykosen**, dazu zählen die oberflächliche saprophytische Form („Kolonisation“) und die Pilzkugel („Fungus Ball“); sowie die eosinophil-medierten Mykosen wie die eosinophile chronische Rhinosinusitis. \[1\][2][3]

Die klinische Symptomatik der Nasennebenhöhlen-Mykosen kann neben der Sekretretention, ein Druckgefühl beim Absenken des Kopfes und bei körperlicher Belastung, sowie eine Klopfempfindlichkeit der fazialen Kieferhöhlenwand umfassen. Vorwiegend sind die Patienten jedoch symptomlos, meist handelt es sich um einen Zufallsbefund. In der Bildgebung ist die Verschattung der Nebenhöhlen das Leitsymptom. Die therapeutischen Maßnahmen umfassen bei allen Formen die chirurgische Sanierung der betroffenen Nasennebenhöhlen mittels der FESS (functional endoscopic sinus surgery), eine antimykotische Medikation ist bei nichtinvasiven Mykosen grundsätzlich nicht erforderlich. Die nichtinvasiven Formen besiedeln präformierte Körperhöhlen, vorwiegend die Nasennebenhöhlen und die Lunge und im Gegensatz zu den invasiven Formen infiltrieren sie das Gewebe nicht sondern sitzen der Schleimhaut vielmehr auf. \[1\][2][33][34]

1.1 Invasive Mykosen

Die **akute fulminante** invasive Mykose schreitet sehr rasch voran und weist eine hohe Mortalitätsrate auf. In der Lunge kommt es zu einer nekrotisierenden Bronchopneumonie, in den Nasennebenhöhlen besiedeln die Pilzorganismen schließlich die Orbita und das Gehirn.

Die **granulomatöse indolente** invasive Mykose ist eine äußerst seltene Form die hauptsächlich in Afrika und im Südosten Asiens auftritt. Sie ist durch profuses Pilzwachstum sowie eine lokal begrenzte Invasion in umliegendes Gewebe gekennzeichnet.

Die **chronische** invasive Mykose schreitet langsam voran und breitet sich meist in die Orbita, ausgehend von einer Mykose des Sinus ethmoidalis, aus. [6] [12] [36]

1.2 Aspergillum

Das Aspergillum ist differentialdiagnostisch erwähnenswert, es handelt sich um eine invasive granulierende Pilzinfektion und kommt hauptsächlich in der Lunge oder seltener in den Nasennebenhöhlen vor. Durch schmerzloses, langsames Wachstum einen Tumor vortäuschend, destruiert es das Lungengewebe sowie den Knochen der Nasennebenhöhlen und der angrenzenden Orbita. Im Unterschied zum Fungus Ball infiltriert es die Schleimhaut der Nasennebenhöhlen. [6]

1.3 Nichtinvasive Mykosen

Kolonisation

Bei der harmlosen saprophytischen Form werden vorwiegend eingedicktes Sekret oder Verkrustungen oberflächlich von Pilzen besiedelt. Eine Symptomatik ist selten, die Therapie besteht in der Entfernung des Sekretes bzw. der Verkrustungen mit Pilzbefall.
Fungus Ball

Die nichtinvasive Mykose, der sogenannte Fungus Ball betrifft immunkompetente und ansonsten gesunde Patienten. Die Kieferhöhlen sind am häufigsten betroffen wobei das Auftreten vorwiegend einseitig ist. In der total oder subtotal verschatteten Kieferhöhle finden sich dicht zusammengeballte Pilzmassen und häufig zentral gelegene, nahezu metalldichte Einschlüsse inmitten des Pilzballes. [1] [6] [11] [12] [25] [31] [33] [35] [37]

Eosinophile chronische Rhinosinusitis

Pilze als Auslöser einer eosinophil dominierten chronischen Rhinosinusitis werden diskutiert (Ponikau et al). Andere Theorien besagen, dass Staphylokokken Superantigene (Van Cauwenberge et al) dafür verantwortlich sind. Diese nichtinvasive **Form der Sinusitis mit ev. Pilzbeteiligung** betrifft immunkompetente Patienten meist im frühen Erwachsenenalter, allerdings mit Bevorzugung des männlichen Geschlechts. Im Unterschied zum Fungus Ball sind mehrere Nasennebenhöhlen betroffen. Kennzeichnend sind Massen von eosinophilem Schleim mit Kolonien aus dicht gepackten eosinophilen Granulozyten und zellulärem Debris und Polypen, wobei der Nachweis von Pilzhyphen obligat (Braun et al) - der Zusammenhang mit chronischer Sinusitis jedoch nicht geklärt ist. Die Patienten leiden häufig an Asthma, weshalb man auch vom Sinubronchialen Syndrom spricht. Eine allergische Rhinitis, kann durch eine Sensibilisierung auf Pilze entstehen, ist IgE mediert, entspricht einer Typ I Allergie und sollte nicht mit einer eosinophilen chronischen Rhinosinusitis verwechselt werden. [31] [35] [38] [39] [40] [41]
V MYKOSE DER KIEFERHÖHLEN, FUNGUS BALL

Kieferhöhlen-Mykosen oder Fungus Balls sind eine häufige Erkrankung der Nasennebenhöhlen, hauptsächlich sind der Sinus maxillaris (94%) und der Sinus sphenoidalis (4-8%) betroffen, wobei der Fungus Ball vorwiegend einseitig auftritt. Der Sinus ethmoidalis, frontal oder mehrere Sinus sind sehr selten betroffen. [1][2]

Üblicherweise handelt es sich um immunkompetente und ansonsten gesunde Patienten mittleren Alters, mit einer Bevorzugung des weiblichen Geschlechtes (2:1). Fälle von erkrankten Kindern sind bisher nicht bekannt. [1][2][33][42][43]

In einigen Fällen berichten Patienten über das Ausschneuzen übelriechender Borken innerhalb mehrere Monate. [6]

1 Morphologie

(„Aspergillum“) in der Kirche. Der Name Aspergillus stammt aus dem Lateinischen, aspergere, was soviel heißt wie bespritzen. \[6\] [11] [29]

Abb. 6: Aspergilluskolonie mit typischen septierten, verzweigten Hyphen (PAS-Färbung, 400fache Vergrößerung)

Mikroskopisch ist der Pilzball vorwiegend aus Myzelien und Entzündungszenellen aufgebaut und meist von einer entzündlichen Gewebsreaktion, Zell-Detritus, Epithelzellen sowie in einigen Fällen einer Bakterienschicht umgeben; im Zentrum finden sich nekrotische Anteile. Der Fungus Ball sitzt der Kieferhöhlenschleimhaut auf, seine Hyphen durchdringen diese nicht wie dies bei invasiven Mykosen der Fall ist. \[1\] [6] [11] [32] [44]
Makroskopisch erscheint der Fungus Ball als schleimiges bis bröckeliges Pilzkonglomerat von grau-braun-schwarz-grün bis gelblicher Farbe das sich leicht von der Sinusschleimhaut ablösen lässt. \(^1\)[6][44]

Die charakteristisch aussehenden Pilzmassen lassen sich mit einer Sensitivität von 100% und einer Spezifität von 99% während des operativen Eingriffes feststellen. \(^1\)

Infolge einer bakteriellen Superinfektion können die Pilze jedoch auch vollständig zugrunde gegangen sein, aus diesem Grund ergibt der histologische Befund nur nekrotisches Material und somit einen negativen Pilznachweis. \(^6\)

1973 bezeichnete Messerklinger die extramukösen Pilzmassen welche die Kieferhöhle komplett ausfüllen können erstmals als Pilz-Konkremente, zum damaligen Zeitpunkt wurden diese aber keinen histologischen Untersuchungen unterzogen sondern als „amorphe Massen, krümelige Sekrete oder Rhinoliten“ bezeichnet. \(^11\)

Abb.7: Endoskopisch/intraoperatives Bild einer Aspergillus-Mykose, Kieferhöhle links
Abb. 8: Entfernter Fungus Ball der Kieferhöhle

2 Bildgebung

Die **Computertomographie** ist der Goldstandard in der Diagnostik von Erkrankungen der Nase und Nasennebenhöhlen. Sie zeichnet sich durch eine hervorragende Darstellung von Knochen aus und liefert überlagerungsfreie Schnittbilder in koronarer sowie axialer Schichtführung. [20]

Im Nasennebenhöhlen-CT findet sich in 90% der Fälle eine total oder subtotal heterogen verschattete Kieferhöhle, in 10% ist der Sinus homogen verschattet. [1]

Im Zentrum des Fungus Ball befinden sich in 45-76% der Fälle ein oder auch mehrere **Röntgendichte Einschlüsse** um die sich der Pilz schubweise angelagert hat. Sie sind nahezu rund, von einem bis wenigen mm Durchmesser und im NNH-CT deutlich, als vorwiegend zentral in der total oder subtotal verschatteten Kieferhöhle liegende metalldichte Einlagerung zu erkennen. [1] [6] [11] [33] [42] [43] [45] [46] [47] [48]

Schliereartige Verkalkungen sind untypisch, aber nicht ausschließlich für eine Kieferhöhlen-Mykose und finden sich meist zu Beginn der Erkrankung. [6]
3 Klinisch-pathologische Kriterien für die Diagnose des Fungus Ball (De Shazo 1997)

1. Radiologischer Beweis einer Verschattung des Sinus, mit oder ohne assoziierten wolkigen Kalzifikationen
2. Mukopurulentes, bröckeliger oder sandiges Material innerhalb des Sinus
3. Dichte Zusammenballung von Pilzhyphen (Fungus Ball), die respiratorische Sinusschleimhaut nicht durchdringend, ihr aber angrenzend

4 Pathophysiologie

Zwei Theorien zur Entstehung des Fungus Ball werden in der Literatur diskutiert:

Die aerogene Theorie geht davon aus, dass große Mengen von Aspergillus Sporen über einen längeren Zeitraum eingeadmet, aufgrund eines blockierten Ostium naturale nicht abtransportiert werden und sich so eine Kieferhöhlen-Mykose entwickeln kann. Diese Situation findet sich nur in landwirtschaftlichen Betrieben, Bergwerken und im Sudan, wo Pilzerkrankungen der Nasennebenhöhlen endemisch sind.

Außerdem existiert eine dritte, gemischte Theorie die beide Entstehungsmechanismen kombiniert. [1] [5] [33] [43] [48]

Auf den Einfluss von Zinkoxid-Eugenol haltigen Wurzelfüllmaterialien auf die Kieferhöhlenschleimhaut, das Aspergilluswachstum sowie die Entstehung der röntgendichten Einlagerungen im Sinus wird in Kapitel VI näher eingegangen.
5 Prädisponierende Faktoren

- entsprechend der aerogenen Theorie:

Rezidivierende Sinusitiden und lokale anatomische Anomalien werden in der Literatur als mögliche prädisponierende Faktoren diskutiert, [1][29][32] aber auch die vermehrte Einnahme von Antibiotika und Kortikoiden soll bei der Entwicklung einer Mykose der Nasennebenhöhlen eine Rolle spielen. [6][32]

Rezidivierende Sinusitiden

Eine lokal geschädigte Kieferhöhlenschleimhaut nach immer wiederkehrenden Sinusitiden kann die Entstehung einer Aspergillusinfektion begünstigen. Aufgrund der entzündungsbedingten Schwellung der Mukosa können Drainage und Ventilation des Sinus über das Ostium naturale behindert sein und somit inhalierte Pilzsporen im Antrum gefangen halten und deren Zusammenballung fördern. [29][32][42]

Andere Autoren zeigten, dass kein Zusammenhang zwischen präexistenten oder aktuellen Sinusitiden und dem Vorhandensein eines Fungus Ball besteht. [1]

Anatomische Anomalien

Prädisponierende lokale Faktoren wie eine paradox gekrümmte mittlere Nasenmuschel oder Septumdeviationen wurden bei etwa 15% der Patienten mit einem Fungus Ball der Nasennebenhöhlen festgestellt, was jedoch der Häufigkeit der normalen Bevölkerung entspricht und somit entgegen der Vermutungen anderer Autoren (Matjaz et al 2004) keine nennenswerte Rolle in der Entstehung der Kieferhöhlen-Mykose zu spielen scheint. [1][32]

Medikamente

Systemisch oder lokal verabreichte Antibiotika können durch Eliminierung der Bakterienflora das Wachstum von Pilzen indirekt fördern, auf Pilznährböden macht man sich diesen Effekt durch antibiotische Zusätze zunutze.

Kortikoide ermöglichen eine Pilzinvasion des Gewebes indem sie die körpereigene Immunabwehr schwächen. [6]
- entsprechend der odontogenen Theorie:

Begünstigend für die Entstehung einer Pilz-Infektion der Nasennebenhöhlen bei ansonsten gesunden Patienten ist die Verschleppung von pathogenen Keimen aus der Mundöhle in die Kieferhöhle; auf den Einfluss von Zinkoxid haltigem Wurzelfüllmaterial in der Kieferhöhle wird später eingegangen. [1] [29] [32]

Keimverschleppung

Aufgrund der anatomisch bedingten Nähe der Oberkieferzähne in Regio 3-8 können pathogene Keime von parodontal erkrankten Zähnen (Parodontitis apicalis oder –marginalis) über das Foramen apikale in die basale Kieferhöhlschleimhaut gelangen und diese infizieren. [8] [9]

In der Literatur wird von einem Einzelfall berichtet, in dem das Auftreten einer Kieferhöhlen-Mykose in Zusammenhang mit einer oro-antralen Fistel gebracht wurde. Die Patientin wurde nach Extraktion des zweiten Molar im Oberkiefer rechts, an der Abteilung des Autors vorstellig nachdem bereits zweimal der Versuch, eine post extraktionem aufgetretene Mund-Antrum-Verbindung zu decken, gescheitert war. Im CT war der rechte Sinus wolkig verschattet; eine Caldwell-Luc Operation sowie histologische Untersuchungen konnten den Verdacht eines Fungus Ball bestätigen. [50]

6 Röntgendichte Einschattungen

Typisch, aber nicht pathognomonisch für den Fungus Ball des Sinus maxillaris ist das Auftreten von meist zentral in der verschatteten Kieferhöhle gelegenen metalldichten Einschlüssen, die mit einer Häufigkeit von 45-76% auf der Seite des erkrankten Sinus auftreten. [6] [11] [43] [45] [47] [51] [52]

Sie sind nahezu rund, von 1-14 mm Durchmesser (durchschnittliche Größe 2.7-3mm) und befinden sich zu 95% im Zentrum des Pilzballes und zu 5% peripher innerhalb des Sinus. [6] [47] [51] [52]
Der **Entstehungsmechanismus** dieser Einschattungen wird in der Literatur diskutiert. Einige Autoren nehmen an, dass sie Stoffwechselprodukte des Pilzballes sind, was die aerogene Theorie zur Entstehung der Kieferhöhlen-Mykose unterstützt; andere wiederum vermuten einen Zusammenhang mit Zinkoxid haltigem Wurzelfüllmaterial und unterstützen somit die iatogene (odontogene) Theorie. [1] [4] [7] [43] [48]

Alle untersuchten Wurzelfüllpasten enthielten Zinkoxid in hoher Konzentration sowie röntgendichte Schwermetalle; Endomethasone® wies die stärkste Ähnlichkeit mit den analysierten Einschlüssen aus der Kieferhöhle auf.

Um ihre Befunde zu unterstützen untersuchten **Beck-Mannagetta et al.** auch eine nekrotische Gewebeprobe aus dem Zentrum des Pilzballes, welche einen schalenförmigen Aufbau um den röntgendichten Kern aufwies, auf die **Verteilung von Zink.** Der histologische Schnitt senkrecht zum Schalenaufbau zeigte periodische Anreicherungen von Zink, welche auf Diffusionsvorgänge hinweisen die bei der Auslaugung von Zink aus dem Wurzelfüllmaterial stattfinden. [6]
Um die Herkunft der metalldichten Einschattungen und somit zwischen aerogener und iatrogener (odontogener) Theorie zur Entstehung der Kieferhöhlen-Mykose differenzieren zu können, untersuchten Krennmair et al. 1995 präoperative Computertomographien von 32 Patienten, die alle unilaterale röntgendichte Einschlüsse im Sinus maxillaris, sowie endodontisch behandelte Zähne im Prämolaren- und Molarenbereich auf der Seite der Einschattungen, aufwiesen. Die Bereiche die auf deren Dichtewerte (Hounsfield Units, HU) gemessen wurden, waren zum einen das Zentrum der metalldichten Einschlüsse und zum anderen die Apices der wurzelbehandelten Zähne.

Einschattungen mit Dichtewerten über 1,500 HU wurden als „anorganische Substanz“ und solche mit Werten unter 1,500 HU als „organische Masse“ die Kalziumphosphat (Apatit) oder –karbonat enthält, bezeichnet.

Bei 22 (68.8%) Patienten konnte intraoperativ sowie histologisch eine Mykose der Kieferhöhlen diagnostiziert werden, davon wiesen 18 Patienten „anorganische“ und 4 Patienten „organische“ Einschlüsse auf. Die Dichtewerte bewegten sich zwischen 620 und 3,070 HU.

Eine positive Korrelation zwischen den Dichtewerten „anorganischer“ Einschlüsse und Wurzelfüllmaterialien wurde ebenfalls gefunden.

Die übrigen 10 Patienten ohne Fungus Ball zeigten insgesamt deutlich niedrigere (212 bis 2,750 HU) Dichtewerte auf; 3 Patienten wiesen „anorganische“ und 7 Patienten „organische“ Einschlüsse auf.

Zwischen Patienten mit (2,816.3 ± 268.7 HU) und Patienten ohne (2,747.0 ± 324.6 HU) Kieferhöhlen-Mykose wiesen die Dichtewerte der Wurzelfüllmaterialen hingegen keinen signifikanten Unterschied auf.

Dichtewerte zwischen der in vitro (N2 = 3,071 HU, Endomethasone = 2,990 HU, Harvard Zement = 3,100 HU) und in vivo (2,816.3 ± 268.7 HU bzw. 2,747.0 ± 324.6 HU) untersuchten Wurzelfüllmaterialien erbrachte in beiden Gruppen ähnliche Ergebnisse. [48]

Zusammenfassend konnten Krennmair et al sowie Lenglinger et al in ihren Untersuchungen zeigen, dass Patienten mit der Diagnose eines Fungus Ball Einschlüsse mit deutlich höheren Dichtewerten aufwiesen als Patienten ohne Fungus Ball. „Anorganische“ Einschattungen scheinen also dentaler Herkunft zu sein, wohingegen „organische“ Einschattungen Produkte des Pilz-Stoffwechsels (kalzifizierte Bereiche innerhalb des Fungus Ball) darstellen und dadurch die aerogene Theorie unterstützen. [43] [48]
VI DENTOGENE URSACHEN DER SINUSITIS MAXILLARIS UND KIEFERHÖHLEN-MYKOSE

Die anatomisch bedingte Nähe zwischen Kieferhöhlenboden und den Zahnwurzeln der Oberkieferzähne im Bereich 3-8, begünstigt die Ausbreitung von Infektionen unterschiedlicher Genese in die basale Kieferhöhlenschleimhaut. [8] [9] [19] [26]

Dentogene Ursachen lassen sich in 30-40% der Infektionen der Kieferhöhlenschleimhaut zumindest nicht ausschließen. [9]

Abb.10: Ursachen der odontogenen Sinusitis maxillaris (Übersicht)

1 Apikale Parodontitis

1943 erbrachte Bauer erstmals den histologischen Beweis für die Ausbreitung von periapikalen Infektionen in die Kieferhöhle.

1974 bezeichnete Selden diesen Prozess Endo-antrales-Syndrom (EAS). Es zeigte sich in weiteren Studien, da sich die Entzündung über das Blut-bzw. Lymphsystem ausbreitet, dass
der Einfluss auf die Kieferhöhlenschleimhaut umso größer ist, je näher die Wurzeln des infizierten Zahnes an diese heranreichen. [8]

Radiologische Charakteristika des EAS (Selden 1999)

- die Wurzel des pulpitisichen Zahnes liegt in unmittelbarer Nähe zum Kieferhöhlenboden,
- der pulpitisiche Zahn weist eine periapikale Aufhellung auf,
- die Lamina dura zwischen dem pulpitisichen Zahn und der Kieferhöhle ist unterbrochen,
- über dem betroffenen Zahn wölbt sich eine lokale Schwellung der Mukosa in das Kieferhöhlenlumen vor,
- die umgebende Sinusschleimhaut weist unterschiedlich radioopake Zonen auf. [53]

In 80% der Fälle einer apikalen Parodontitis der Oberkieferzähne erscheint die Kieferhöhlenschleimhaut hyperplastisch verändert. [8]

Akute apikale Parodontitis

Ursachen einer akuten apikalen Parodontitis sind eine vorhergegangene Pulpitis mit Pulpanekrose aufgrund von Karies, eine falsche Technik beim Aufbereiten eines infizierten Wurzelkanals oder ein Trauma. Folglich kommt es zur Entzündung des Desmodontes mit Ausbreitung in das Parodontium. Bleibt diese, trotz starker Druck- und Klopfempfindlichkeit sowie diffuser Schmerzen unbehandelt, so kann es letztlich zu einem submukösen Abszess kommen. [9] [18] [19] [27] [29]

Röntgenologisch ist die akute apikale Parodontitis noch unauffällig, da im Röntgen erst ein 50%iger Verlust des Mineralgehalts des umliegenden Knochens sichtbar wird. [9]

Am häufigsten breiten sich **Abszesse** des Kieferbereiches in Richtung Knochenoberfläche aus. Sobald das Periost durchgebrochen ist lassen die Schmerzen nach, die Entzündung breitet sich in der Umgebung aus. Selten breitet sie sich nach innen aus und führt zu einer Osteomyelitis mit Fistelbildungen. [9] [18] [19] [27] [29]
Chronische apikale Parodontitis

Eine chronische apikale Parodontitis (apikales Granulom) ist durch eine granulierende Entzündung des periapikalen Bereiches gekennzeichnet; im Röntgen ist eine begrenzte periapikale Aufhellung zu sehen, die der langsam fortschreitenden Osteolyse entspricht, sowie eine Erweiterung des Desmodontalspaltes. [18] [26] [27] [29]

Die Geschwindigkeit mit der sich die Entzündung von der Pulpa bis zur Kieferhöhlenschleimhaut ausbreitet, ist von der Entzündungsursache abhängig. Bei der primär akuten Parodontitis apicalis schreitet die Entzündung rapid bis zum Desmodont fort, durchdringt den Knochen und erreicht schließlich die Phase, in der sich die Entzündung in das umliegende Weichgewebe ausbreitet und schließlich die Kieferhöhlenschleimhaut erreicht. Im Fall einer chronischen Parodontitis apicalis devitaler Zähne besteht ein Gleichgewicht zwischen dem Entzündungsreiz der Bakterientoxine und den körpereigenen Abwehrmechanismen, sodass die periradikuläre Osteolyse nur sehr langsam und meist beschwerdefrei abläuft. [9] [29] [54]

Parodontitis marginalis

Die fortgeschrittene Parodontitis marginalis profunda kann ebenso zu einer Entzündung der Kieferhöhlenschleimhaut führen. [18] [26] [27] [29]

2 Fremdkörper in der Kieferhöhle

Zu diesen zählen in erster Linie überstopftes Wurzelkanalfüllmaterial sowie Wurzelnreste, aber auch reinierte Zähne können im Zuge eines Extraktionsversuches in die Kieferhöhle luxiert werden. [18] [19] [26] [29]

Ebenso können über eine unerkannte Mund-Antrum-Verbindung Abdrukkmaterial oder Speisereste in die Kieferhöhle gelangen; als Folge von Traumata finden sich gelegentlich Holz-, Glas- oder Metallsplitter sowie Steine in den Nasennebenhöhlen.
Fremdkörper jeglicher Art müssen, aufgrund des Infektionsrisikos für die Kieferhöhlenschleimhaut sowie möglicher Komplikationen wie eine Sinusitis maxillaris oder Kieferhöhlen-Mykose, umgehend chirurgisch aus dem Sinus entfernt werden.[18][19][26]

\subsection*{2.1 Endodontische Materialien}

Studien zeigten, dass 41-89.2\% aller Patienten mit der Diagnose eines Fungus Ball der Kieferhöhlen endodontisch behandelte Zähne, im speziellen Wurzelkanalfüllungen im Seitenzahnbereich des Oberkiefer aufwiesen.[1][2][34][55]

Im Zuge einer endodontischen Behandlung eines Oberkieferzahnes im Bereich 3-7 kann es, aufgrund der anatomisch bedingten Nähe der Wurzeln zum Boden der Kieferhöhle, bei einem der Behandlungsschritte zu einer Irritation der Kieferhöhlenschleimhaut kommen. Bei einer Überinstrumentierung oder Überfüllung des betroffenen Zahnes über den Apex in das umliegende Parodontium oder direkt in den Sinus, können Wurzelfüllpasten oder hochinfektiöse Keime aus dem Wurzelkanal in die Mukosa der Kieferhöhle verschleppt werden und dort eine Entzündungsreaktion hervorrufen.[8][9][19][26]
Beispiel

Patient weiblich; Alter 67,8 Jahre; Mykose der linken Kieferhöhle. Zahn 26 wurzelbehandelt mit Überfüllung der palatinalen Wurzel.
Abb.1 (1-5): NNH-CT in koronarer Schichtführung; Wurzelbehandelter Zahn 26 mit Überfüllung der palatinalen Wurzel in die Kieferhöhle
2.2 Wurzelreste

Im Zuge einer Extraktion, vor allem von tief kariös zerstörten Zähnen, kann es vorkommen, dass Wurzeln frakturieren. Im Oberkieferteztahnbereich besteht dann die Gefahr, dass die frakturierte Wurzel bei dem Versuch sie mit dem Beinschen Hebel aus der Alveole zu mobilisieren, in die Kieferhöhle luxiert wird. Luxierte Zahnwurzeln müssen umgehend operativ oder transalveolär entfernt werden, da sie ein erhebliches Infektionsrisiko oder zumindest einen Reiz für die Kieferhöhlenschleimhaut darstellen. [19] [29]

Als Radices relictae werden Wurzelreste bezeichnet, die vor Jahren oder Jahrzehnten bei einer Extraktion frakturiert sind, im Knochen verblieben und nun von Schleimhaut bedeckt sind. Auch ein bereits eingewachsener Wurzelrest muss operativ entfernt werden, um Komplikationen aufgrund der Nähe zur Kieferhöhle, zu vermeiden. [56]

2.3 Retinierte Zähne

Weisheitszähne sind die am häufigsten retinierten Zähne (80% der Erwachsenen hat mindestens 1 retinierten Weisheitszahn im gesamten bleibenden Gebiss), obere Weisheitszähne sind zu mindestens 25% retiniert. Die oberen Canini sind am 2. häufigsten retiniert (0,5-3,5%), sie sind meist nach palatinal verlagert.

Zu den Komplikationen im Zuge der operativen Entfernung zählen eine Eröffnung der Kieferhöhle sowie die Luxation in die Kieferhöhle. Im Fall einer Pericoronitis (Dentitio difficilis) kann sich die Entzündung in Knochen und Weichgewebe ausbreiten; ein akut eitrig entzündeter retinierter Zahn sollte in diesem Stadium nicht entfernt werden, es kann jedoch bei einer subklinischen, geringen Entzündung bereits zur Keimverschleppung in die Kieferhöhle kommen. [29] [57]
3 Mund-Antrum-Verbindungen (MAV)

Als Ursachen kommen Zahnextraktionen, Wurzelspitzenresektionen und operative Weisheitszahnentfernungen in Frage. Betroffene Zähne sind, aufgrund der anatomischen Verhältnisse des Kieferhöhlenbodens, Canini, Prämolaren und Molaren. Der Nachweis erfolgt mittels vorsichtiger Sondierung mit einer stumpfen Sonde sowie positivem Nasenblasversuch. \[18\] \[19\] \[26\] \[56\]

Die besondere Anatomie des Kieferhöhlenbodens, vor allem im Bereich der ersten Molaren, bedingt oftmals eine Eröffnung der Nebenhöhle. Im höheren Alter atrophiert der Alveolarfortsatz und die Kieferhöhlen nehmen an Volumen zu, es bilden sich sogenannte Zahnlückenbuchten. \[18\] \[56\]

Abb. 12: Zahnlückenbuchten zwischen Wurzeln und bei fehlenden Zähnen

Die Mund-Antrum-Verbindung stellt die häufigste Komplikation nach Zahnextraktionen dar und ist mit 60–76% die häufigste Ursache einer odontogenen Sinusitis maxillaris. Vor allem bei devitalen oder beherdeten Molaren ist mit einer aus dem Mundraum aufsteigender Infektion des Sinus zu rechnen.

Nach Wassmund kann es, bei einer traumatischen Kieferhöhleneneröffnung ohne darauffolgenden Verschluss, bereits nach 3 Tagen in 50% und nach 7 Tagen in 80% zu einer Infektion der Kieferhöhlenenschleimhaut kommen. \[26\]
Der Verschluss einer MAV erfolgt daher möglichst sofort, zumindest aber innerhalb von 24 Stunden, längstens nach 48 Stunden. \[56\]

Eine MAV wird nicht sofort verschlossen bei vorliegender oder bei Verdacht auf eine Sinusitis (akut oder chronisch); Zysten; multiplen Polypen/Fremdkörpern in der Kieferhöhle; um eitriges Sekret abfließen zu lassen sowie um geplante Folgeoperationen nicht zu erschweren. \[29\]

4 Odontogene Kieferzysten

Zysten des Ober-und Unterkiefers sind gutartige, meist schmerzlose pathologische Gebilde mit epithelialer Auskleidung sowie flüssig-, breig- oder gasförmigem Inhalt. Sie treten meist zwischen dem 20. und 50. Lebensjahr auf, bei etwa 3% der Erwachsenen tritt irgendwann im Leben eine Kieferzyste auf, Männer sind häufiger betroffen als Frauen. Sie weisen ein langsames und raumforderndes Wachstum auf das entweder regelmäßig oder schubweise erfolgen kann. \[29\] \[58\] \[59\] \[60\]

Die Entstehung und das Wachstum von Zysten sind noch nicht ganz geklärt, zum einen wird vermutet, dass ein entzündlicher oder traumatischer Reiz zu einer Proliferation des ruhenden Epithels führt; zum anderen, dass es von selbst zur Epithelproliferation kommt. Die zur Entstehung von Zysten notwendigen Epithelkeime können ein Rudiment der Embryonalentwicklung sein, die Zyste kann sich jedoch aus Drüseneosinophil oder traumatisch versprengtem Epithel entwickeln. \[29\]

Die Größenzunahme ist passiv und nicht autonom, sie erfolgt aufgrund eines osmotischen Druckanstiegs im Zystenlumen, dabei wirkt der Zystenbalg als semipermeable Membran. Die Zyste dehnt sich immer weiter in Richtung des geringsten Widerstandes aus, dabei wird immer mehr Knochen resorbiert bis der Zystenbalg die Zahnwurzeln zur Seite drängt und die Schleimhaut sich nach vestibulär oder palatinal vor wölbt.

Rezidivierend auftretende Entzündungen des umliegenden Gewebes liefern wiederum den Anreiz zur weiteren Expansion der Zyste, sie wächst so lange weiter bis sie chirurgisch eröffnet und der Zystenbalg mit Inhalt möglichst in toto entfernt wird. \[29\] \[59\]
Aus diesem Grund muss jede Kieferzyste operativ entfernt werden, sie zerstört nicht nur den umliegenden Knochen sondern es können auch in seltenen Fällen Karzinome entstehen. Zudem kann die Entzündung einer infizierten Zyste in die Mund-, Nasen- oder Kieferhöhle durchbrechen und die Schleimhaut infizieren. [29] [58] [59] [60]

4.1 Bildgebung zystischer Veränderungen

Das Orthopantomogramm (OPG) ist in der Diagnostik von Kieferzysten der Standard, meist handelt es sich jedoch um röntgenologische Zufallsbefunde. Lokalisation, Größe sowie Ausdehnung in benachbarte Strukturen lassen sich hervorragend röntgenologisch abschätzen, nähere Informationen liefert erst die histologische Auswertung. Zysten stellen sich im Röntgen als rundliche, scharf begrenzte, meist einkammrige Aufhellung dar; nur die Keratozyste ist meist mehrkammrig.

Bei großen, die Kieferhöhle annähernd ausfüllenden Zysten ist eine Beurteilung der Nachbarstrukturen (Orbita, N. infraorbitalis, Nasenhauptöhle) mittels Computertomographie indiziert, sowie auch bei Keratozysten und multilokulären Zysten.

Die Sinuskopie der Kieferhöhle stellt ebenfalls eine hervorragende Möglichkeit dar, die Ausdehnung einer Zyste beurteilen zu können. Ebenfalls lässt sich auf diesem Weg eine Gewebeprobe entnehmen oder eine endoskopisch-assistierte Zystektomie durchführen. [29] [59] [60]

4.2 Entzündliche Zysten der Kieferhöhle

Radikuläre Zysten sind mit 60-80% die am häufigsten auftretende Zystenform, sie gehören zu den entzündlich bedingten Zysten, sie treten vorwiegend im Oberkiefer aufgrund einer Parodontitis apicalis eines devitalen Zahnes auf. Sie bestehen aus einer äußeren bindegewebsigen Kapsel mit innen angrenzendem mehrschichtigem Plattenepithel, der Zysteninhalt besteht aus fibroblastenreichem, gut vaskularisiertem Granulationsgewebe.
Residualzysten bilden sich infolge einer Extraktion oder der unvollständigen Entfernung einer Zyste. Sie entsprechen dem Aufbau einer radikulären Zyste und sind somit histologisch nicht zu differenzieren.

Abb.13: Odontogene Zyste des Oberkiefers

Das **Zystenwachstum** erfolgt solange symptomlos, bis es zu einer sekundären Infektion der Zyste mit ausgeprägter Schmerzsymptomatik kommt, zur Kippung der Nachbarzähne oder bis sich die umgebende Schleimhaut beginnt vorzuwölben. Das Lumen der Kieferöhle kann durch das Wachstum von Zysten im Oberkiefer nach kranial massiv verkleinert werden, sodass nur noch ein kleines Restlumen verbleibt.

Das klinische Bild einer Sinusitis maxillaris tritt auf, wenn die Zyste das Ostium der Kieferöhle blockiert oder wenn es zur Infektion der Kieferhöhenschleimhaut kommt.

Dehnt sich die Zyste weiter aus, kann es aufgrund der Resorption angrenzender Knochenwände zur Ausdehnung der Zyste in benachbarte Regionen kommen. Die Symptome können eine erschwerte Nasenatmung bis hin zu Doppelbildern sein. [59]

Follikuläre Zysten zählen zu den entwicklungsbedingten Zysten, sie bilden sich zwischen äußerem und innerem Schmelzepithel eines retinierten Weisheitszahnes vorwiegend im Unterkiefer. Meist umschließen sie die Krone des betroffenen Zahnes, sodass diese in den Zystenhohlraum ragt.
Die Keratozyste wird nach den Richtlinien der WHO als echter Tumor klassifiziert und somit als „keratozystischer odontogener Tumor“ bezeichnet. Sie weisen ein aggressives Wachstum auf; in angrenzendem Weichgewebe und Knochen bilden sich sogenannte Satellitenzysten aus. Die Keratozyste tritt gehäuft im Kieferwinkel des Unterkiefers auf, aber auch im Bereich der Oberkiefermolaren. Das verhornte mehrschichtige Plattenepithel im Inneren der bindegewebigen Kapsel kann in seltenen Fällen maligne entarten.

4.3 Zysten der Kieferhöhlenschleimhaut

Pseudozysten sind im Zystenlumen bindegewebig ausgekleidet und finden sich meist am Kieferhöhlenboden. [13]

Abb. 14: Pseudozyste im Recessus alveolaris (endoskopisch assistierte Entfernung)
Mukoretentionszysten sind in der Nähe des Ostium naturale zahlreich, sie entstehen durch zystische Erweiterung der Ausführungsgänge der Schleimdrüsen.\[13\]

Abb.15: Mukoretentionszyste der Kieferhöhlenschleimhaut (endoskopisch assistierte Entfernung)
VII THERAPIE DER DENTOGENEN SINUSITIS MAXILLARIS

1 Konservative Therapie

Um die Selbstregeneration der Kieferhöhlenschleimhaut in Abhängigkeit von Ventilation und Drainage zu ermöglichen, werden abschwellende Nasentropfen oder ein Nasenspray, die ein Sympathomimetikum enthalten empfohlen. Eine weitere Maßnahme zur Reduktion des Schleimhautödems ist die Applikation einer mit Sympathomimetikum getränkten Watte, eine sogenannte „hohe Einlage“ unter den mittleren Nasengang. Weiter werden Sekretolytika eingesetzt um der erhöhten Sekretviskosität entgegen zu wirken. Inhalation, Nasenspülung und kühl-feuchte Umschläge sind unterstützende physikalische Maßnahmen in der funktionellen Sinusitistherapie. [13] [17] [18] [61] [62] [63]

Die Entzündungsursache muss beseitigt werden, damit die Kieferhöhlenschleimhaut abheilen kann. Von konservativer Seite sind das Trepanation mit medikamentöser Einlage bei einer Parodontitis apicalis; ist der beherdete Zahn bereits wurzelbehandelt, erfolgt eine Revision mit ebenfalls anschließender medikamentöser Einlage. Die Parodontitis marginalis erfordert eine initiale Parotherapie. [19] [24] [29]

Am Department für Zahnärztliche Chirurgie und Röntgenologie am LKH Graz, werden folgende nicht-steroidale Antirheumatika mit analgetischer und antiphlogistischer Wirkung zur Bekämpfung der Schmerz- und Entzündungssymptomatik verschrieben:

Seractil® forte 400mg, Inhaltsstoff: Dexibuprofen, Dosierung: 3x1 täglich
Voltaren® 50mg, Inhaltsstoff: Diclofenac, Dosierung: 3x1 täglich
Novalgin Filmtabletten, Inhaltsstoff: Metamizol, Dosierung: 3x1 täglich

Als alternative Medikation für Patienten mit vorliegender Kontraindikation gegen eine Behandlung mit NSAR, wie Gastro-Intestinale-Erkrankungen, Hypertonie, Schwangerschaft sowie in der Stillperiode, verschreiben wir Mexalen ® 500mg, mit dem Wirkstoff Paracetamol, 3x1 täglich.
Bei vorliegenden Magen-Darm-Erkrankungen und gleichzeitiger Einnahme von NSAR wird zusätzlich ein **Magenschutz** verschrieben:

Pantoloc® 40mg, Inhaltsstoff: Pantoprazol, Dosierung: 3x1 täglich

Nexium® 20mg, Inhaltsstoff: Esomeprazol, Dosierung: 3x1 täglich

Antibiotika werden bei einer bakteriellen Superinfektion, wenn eine katarrhalische in eine eitrige Sinusitis übergeht, zusätzlich verabreicht. Auch bei Kieferhöhlenrevisionen sowie fakultativ bei Zystenoperationen und Wurzelspitzenresektionen werden Antibiotika eingesetzt. Sie wirken bakterizid und weisen ein breites Wirkungsspektrum auf. Die Präparate der Wahl sind:

Cephalosporine: *Ospexin® 1000mg*, Inhaltsstoff: Cefalexin, Dosierung: 3x1 täglich

Lincosamide: *Dalacin C® 300mg*, Inhaltsstoff: Clindamycin, Dosierung: 3x1 täglich

Makrolide: *Klacid® 250mg*, Inhaltsstoff: Clarithromycin, Dosierung: 3x1 täglich

Erythrocin® 500mg, Inhaltsstoff: Erythromycin Dosierung: 3x1 täglich

Penicillin und Clavulansäure: *Augmentin® 1g*, Inhaltsstoff: Amoxicillin und Clavulansäure, Dosierung: 2x1 täglich

Bei einer Penicillinunverträglichkeit werden *Dalacin C® 300mg* oder *Klacid® 250mg* verschrieben. [64] [65]

2 Chirurgische Therapie

Die **Radikaloperation der Kieferhöhle nach Caldwell und Luc** galt bis in die 1970iger Jahre als Therapie der Wahl da man annahm die Kieferhöhlenschleimhaut könne sich nicht von selbst regenerieren; sie ist heute aufgrund der hohen Komplikationsrate jedoch als obsolet anzusehen. Bei dieser Methode wurde über einen großen osteoplastischen Zugang in der fazialen Kieferhöhlenwand die gesamte Kieferhöhlenschleimhaut reseziert; der entstandene Defekt wurde zur Ventilation und Drainage über den unteren Nasengang offen gehalten. Die
daraus resultierenden Komplikationen als Folge des Schrumpfungsprozesse im Zuge der Narbenbildung, wie eine Irritation des N. infraorbitalis, eine Verhinderung des Sekrettransportes, eine Verkleinerung des Kieferhöhlenlumens sowie Einziehungen der fazialen Kieferhöhlenwand, werden unter dem Begriff „Schmerzsymptom nach radikaler Kieferhöhlenoperation“ zusammengefasst. [13][18]

Abb.16: Knochendeckelmethode nach Lindorf zur Defektdeckung des Operationszugangs
Punktion und Spülung der Kieferhöhle

Endoskopie der Kieferhöhle

Optik verwendet wird. Grundsätzlich sind alle 3 Zugänge möglich, in der Mund-, Kiefer- und Gesichtschirurgie ist ein Zugang über die Fossa canina oder den unteren Nasengang üblich. \[13\] \[18\]

Eine Sinuskopie über eine bestehende Mund-Antrum-Verbindung (transalveolär) ist indiziert, wenn wir die Kieferhöhle vor dem Verschluss der Mund-Antrum-Verbindung inspizieren möchten um die Schleimhaut und das Ostium naturale beurteilen zu können. Ebenfalls kann ein freier Fremdkörper wie ein Wurzelrest, Wurzelkanalfüllmaterial oder auch Abdruckmaterial in der Kieferhöhle lokalisiert und sodann transalveolär entfernt werden. \[13\] \[18\]

Functional Endoscopic Sinus Surgery (FESS)

Bei dieser endoskopisch assistierten Operationstechnik wird das Ostium maxillare identifiziert und erweitert sowie obstruierende pathologisch veränderte Schleimhaut abgetragen, um Ventilation und Drainage wiederherzustellen und die Sinusschleimhaut abheilen lassen zu können. \[13\] \[14\] \[15\] \[67\]
VIII BEHEBUNG DER URSACHEN DER SINUSTIS MAXILLARIS UND KIEFERHÖHLEN-MYKOSE

Die zahnärztliche Chirurgie zielt darauf ab, dentogene Ursachen für Entzündungen/Pilzinfektionen der Kieferhöhle zu entfernen, damit die entzündliche Reaktion der Sinusmukosa zum Stillstand gebracht wird und diese abheilen kann.

Dazu zählen Zahnxtraktionen, Wurzelspitzenresektionen, die Entfernung eines Fremdkörpers oder eines Wurzelrestes aus der Kieferhöhle sowie der Verschluss einer Mund-Antrum-Verbindung. Große Polypen der Kieferhöhlenschleimhaut oder Zysten müssen ebenfalls operativ entfernt werden. [19] [29] [56]

1 Extraktion

Therapeutische Indikationen für eine Zahnextraktion sind nicht erhaltungswürdige, nicht therapierbare Läsionen; dazu zählen prothetisch nicht behandelbare tief kariöse Zähne, eine apikale Parodontitis wenn eine Trepanation, Revision oder Wurzelspitzenresektion nicht möglich oder erwünscht ist, Zähne die eine horizontale Mobilität von > 1mm aufweisen oder sich vertikal und rotatorisch in der Alveole bewegen lassen (Grad 3 und 4 im Miller-Index), Wurzelfrakturen sowie retinierte Zähne die aus Platzgründen nicht durchbrechen können oder Nachbarzähne durch von Entzündungen oder Wurzelresorptionen schädigen. Auch beim zentralen Knochenmarkabszess ist eine Extraktion indiziert, wenn dadurch der Sekretabfluß ermöglicht wird und eine Schrödersche Lüftung von Seiten des Patienten nicht erwünscht ist. [29] [56]

2 Schröder’sche Lüftung

Die Schröder’sche Lüftung ist bei zentralen Knochenmarksabszessen sowie bei der akuten apikalen Parodontitis indiziert, wenn eine Trepanation des Zahnes nicht möglich ist oder nicht erfolgreich durchgeführt werden kann. Es handelt sich hierbei um einen Notfall der mit
starken Schmerzen einhergeht; der Abfluss des Eiters über eine Trepanation im Bereich des Alveolarkammes ermöglicht eine sofortige Linderung der Symptomatik.

Zu Beginn des Eingriffes muss die Wurzelspitze des betreffenden Zahnes mittels des Röntgenbildes oder bei trepanierten Zähnen, mittels einer Wurzelkanalnadel lokalisiert werden, um anschließend unter intramuköser Lokalanästhesie die Schleimhaut senkrecht, bis zum Periost zu inzidieren. Mit dem Rosenbohrer dringt man bis zum Abszess vor und legt einen Gazestreifen ein, der täglich gewechselt werden muss, solange bis sämtlicher Eiter abgeflossen ist und die Schmerzsymptomatik nachgelassen hat. Nach frühestens 3 Wochen erfolgt dann eine Wurzelspitzenresektion des Zahnes. [56]

Im Oberkieferseitzahnbereich ist die leere Alveole immer mittels vorsichtiger Sondierung und Nasenblasversuch auf eine Mund-Antrum-Verbindung hin zu kontrollieren. [29][56]

3 Wurzelspitzenresektion

Indikationen für eine Wurzelspitzenresektion sind eine chronische apikale Parodontitis bei suffizienter Wurzelbehandlung, radikuläre Zysten mit bestehender suffizienter Wurzelbehandlung, wurzelbehandelte überfüllte Zähne mit Eindringen des Materials in die Kieferhöhle, nach erfolgter Schröder’scher Lüftung oder auch seltener, anatomisch bedingte Deformationen der Wurzel die eine orthograde Wurzelkanalbehandlung unmöglich machen sowie Wurzelfrakturen.

Voraussetzung für eine Wurzelspitzenresektion ist eine vor mindestens 3 Monaten abgeschlossene suffiziente Wurzelkanalbehandlung soweit es anatomisch möglich war, sowie eine ausreichende operative Zugangsmöglichkeit.

Chirurgisches Vorgehen

Bei der Auswahl des operativen Zuganges und der Schnittpflichtigkeit gilt es folgende Prinzipien zu beachten: größtmögliche Schonung angrenzender Strukturen wie Nerven, Knochen und Weichgewebe, bei größtmöglichem Zugang für eine optimale Sicht auf den Operationssitus.
sowie eine parallele Schnittführung entlang von Blutgefäßen und elastischen Fasern, immer abseits des knöchernen Defektes um eine komplikationslose Wundheilung zu gewährleisten.

Nach 3 sowie nach 12 Monaten postoperativ erfolgt eine **Röntgenkontrolle** um beurteilen zu können, wie weit die periapikale Läsion zurückgegangen ist und der Defekt knöchern abheilt. Einen klinischen Erfolg stellt die Beschwerdefreiheit von Seiten des Patienten dar. [29] [56] [68]

Zu den **Komplikationen** zählt neben den allgemeinen Komplikationen eines chirurgischen Eingriffes, die Eröffnung der Kieferhöhle im Bereich der Prämolaren und Molaren des Oberkiefers. In diesem Fall muss während des Eingriffes die Kieferhöhle vorübergehend tamponiert werden um eine Verschleppung von Wurzelfüllmaterial oder Keimen zu verhindern. [56]
4 Entfernung von Fremdkörpern/luxierten Wurzelspitze aus der Kieferhöhle

Die Luxation einer frakturierten Wurzelspitze oder eines Wurzelrestes in die Kieferhöhle erfolgt meist aufgrund eines zu hohen Drucks mit dem Beinschen Hebel oder dem Exkavator nach kranial während der Wurzelentfernung.

Nach jeder Extraktion muss der Zahn, vor allem seine Wurzeln, auf seine Vollständigkeit hin überprüft werden, im Oberkiefersitzzahnbereich erfolgt außerdem eine vorsichtige Sondierung der Alveole und der Nasenblasveruch, um eine Eröffnung der Kieferhöhle ausschließen zu können. Bei einer eröffneten Kieferhöhle sowie dem Verdacht auf eine Luxation der Wurzelspitze in den Sinus wird zunächst ein Röntgenbild angefertigt um die Diagnose gegebenenfalls zu bestätigen.

Transalveoläre Entfernung

Zeigt sich die luxierte Wurzelspitze im Röntgenbild, muss vor dem Verschluss der Mund-Antrum-Verbindung versucht werden die Wurzelspitze transalveolär, über die bestehende Verbindung zur Kieferhöhle, gegebenenfalls mit einer kleinen Erweiterung der Perforation zu entfernen. Dies gelingt entweder mit einem kleinen scharfen Löffel oder der Wurzelrest lässt sich mit Hilfe einer Kieferhöhlenspülung zur Alveole hin bewegen um anschließend mit einem scharfen Löffel, einer Pinzette, Fremdkörperzange oder mit dem Sauger über die Alveole zu bergen.

Auf die gleiche Art wird iatrogen in die Kieferhöhle eingebrachtes Wurzelkanalfüllmaterial nach der Extraktion des wurzelbehandelten Zahnes über eine bestehende Mund-Antrum-Verbindung entfernt.\[18\] [19] [56]

Knochendeckelmethode nach Lindorf

Sollte dies nicht gelingen, oder besteht keine offene Verbindung zur Kieferhöhle, wird die Wurzelspitze oder das Wurzelkanalfüllmaterial mit der Knochendeckelmethode nach Lindorf entfernt.\[13\] [18] [56]
5 Plastische Deckung einer Mund-Antrum-Verbindung

Die Operationsmethode der Wahl ist die **Plastische Deckung des Defektes nach Rehrmann (Rehrmann-Plastik)**. Dabei wird ein bukkal gestielter Tapezlappen, der sehr breit gewählt wird um bis über die Papillen der angrenzenden Nachbarzähne zu reichen, gebildet. Zur Verlängerung des Lappens wird das Periost quer geschlitzt, somit kann er über die leere Alveole gelegt und spannungsfrei mit dem palatinalen Wundrand vernäht werden.\(^{[18]}\)[56]

Bei sehr kleinen Kieferhöhleröffnungen wird **Spongostan** und ein **Fibrinkleber** verwendet. [56][58]

6 Zystenoperationen

geschont, das Prozedere gestaltet sich aber für den Patienten als langwierig und mühsam. [29] [56] [58]

Bei der Zystektomie (Partsch II) wird der ganze Zystenbalg mit Inhalt möglichst in toto entfernt; der entstandene Defekt wird primär gedeckt. Kleine Zysten mit einem Durchmesser von < 20 mm, die rundum von festem Knochen umgeben sind und deren Nachbarzähne keinen Schaden infolge der Ausschälung nehmen, können einzeitig entfernt werden.

Eine Zystostomie (Partsch I) wird eher selten angewendet, Ausnahmefälle sind sehr große Zysten bei deren einzeitiger Entfernung Nachbarstrukturen verletzt werden könnten, oder sehr große Zysten in der Kieferhöhle die das Ostium maxillare blockieren.

Die Zystantrostomie wird angewendet wenn sich eine große Zyste des Oberkiefers weit in das Lumen der Kieferhöhle ausgeweitet hat. [13] [29] [58] [59] [60]
IX CHIRURGISCHE THERAPIE DER KIEFERHÖHLEN-MYKOSE

Die FESS (Functional Endoscopic Sinus Surgery) stellt heute den Goldstandard in der chirurgischen Therapie von entzündlichen Erkrankungen der Nasennebenhöhlen dar. [13][69]

Das Ziel einer FESS ist es, über die gezielte Erweiterung der osteomeatalen Einheit sowie der Resektion pathologischer Strukturen, die Ventilation und Drainage der betroffenen Nasennebenhöhle zu gewährleisten, sodass ihre normale Funktion wiederhergestellt ist und die Schleimhaut von selbst ausheilen kann. [13][14][15][33][67]

Bei dieser Operationstechnik wird unter Lokalanästhesie, lokal blutstillenden Maßnahmen und ständiger Endoskopkontrolle der Processus uncinatus, die Bulla ethmoidalis der mittlere Nasenmuschel sowie bestehende Hallersche Zellen, die das Ostium verengen können reseziert; schließlich kann das Ostium maxillare identifiziert und erweitert sowie pathologisch veränderte obstruierende Schleimhaut in unmittelbarer Nähe zum Ostium abgetragen werden. Normalerweise bleibt die Mukosa der Kieferhöhle unangetastet, allerdings werden Schleimhautveränderungen wie Zysten oder große Polypen reseziert. Bei vorliegendem Fungus Ball der Kieferhöhle wird sämtliches Pilzmycel entfernt. [13][14][15][65]

Die Vorteile der Functional-Endoscopic-Sinus-Surgery sind ein minimalinvasives und komplikationsarmes Vorgehen sowie eine niederer Rezidivhäufigkeit von 6.8%. [2][25][33][37]

Aufgrund der anatomisch bedingten Nähe zwischen dem Boden des Sinus maxillaris und der Wurzeln der Oberkieferzähne von 3-8, stellt eine endodontische Behandlung dieser Zähne eine besondere Herausforderung dar. Immer wieder gelangen im Zuge der Behandlung medikamentöse Einlagen, Spüllösungen und Wurzelfüllmaterialien über den Apex hinaus in das periradikuläre Gewebe oder in die angrenzende Kieferhöhlenschleimhaut und können dort eine Entzündungsreaktion hervorrufen. Es ist daher unerlässlich, auch im Hinblick auf die mögliche Entstehung einer Kieferhöhlen-Mykose endodontische Maßnahmen äußerst sorgfältig durchzuführen.[8][9]

1922 war Davis der erste der den vorsichtigen Umgang mit dem periradikulären Gewebe als Voraussetzung für den Erfolg einer Wurzelkanalbehandlung forderte und somit eine wissenschaftliche Basis für die moderne Endodontologie schaffte. Seine Aussage wurde durch Biopsien des apikalen Gewebes postendodontischer Extraktionen in einer Vielzahl von Studien histologisch bestätigt.[54]

1 Indikationen

Indikationen sind eine irreversible Pulpitis sowie eine entzündungsbedingte oder traumatisch verursachte nekrotische Pulpa. Die Ausbreitung der unbehandelten Pulpitis bzw. der Pulpanekrose über den Apex in das Parodont, als apikale Parodontitis bezeichnet, ist eine weitere Indikation für eine endodontische Behandlung des betroffenen Zahnes. Vor einer geplanten Wurzelspitzenresektion oder Hemisektion, bei iatrogener Pulpaeöffnung während der Präparation sowie vor der Verankerung eines Wurzelstiftes, muss der betreffende Zahn ebenfalls endodontisch behandelt werden.[27][70]
2 Ziel

Ziel der Wurzelbehandlung ist es, das Wurzelkanalsystem genau aufzubereiten, mittels desinfizierender Spülungen sämtliche Mikroorganismen zu entfernen um es schließlich auf Dauer biokompatibel und hermetisch zu verschließen. Um mögliche Fremdkörperreaktionen und Gewebsreizungen bis hin zu einer lokalen Nekrose zu vermeiden, gilt es zu beachten, dass Wurzelfüllmaterial und Gewebe so wenig Kontakt wie möglich haben sollen. [27][70][71]

3 Vorgehen

Sobald der oder die Wurzelkanäle des schmerzfreien Zahnes mittels spezieller Wurzelkanalinstrumente sorgfältig aufbereitet sowie mit verschiedenen Lösungen wie NaOCl, 1-2% CHX, 3% H₂O₂, EDTA (Ethylen diamintetra Essigsäure) oder MTAD (Mahmud Torabinejad Antibiotic Detergents) gespült und desinfiziert worden sind, können die Wurzelkanäle definitiv abgefüllt werden. Sollte der Zahn zu diesem Zeitpunkt jedoch noch nicht beschwerdefrei sein, wird eine medikamentöse, desinfizierende Einlage (Ca(OH)₂), 2%CHX) in die Kanäle eingebracht und die Kavität provisorisch verschlossen bis zur völligen Schmerzfreiheit des Zahnes.

Wichtig bei der Aufbereitung der Wurzelkanäle ist es, die Arbeitslänge jedes einzelnen Wurzelkanales nicht zu unter- oder überschreiten. Ein Unterschreiten der Arbeitslänge stellt nicht sicher, dass sämtliches vitales oder nekrotisches Material aus dem Wurzelkanal entfernt wurde. Ein Überschreiten bedeutet gleichsam die Zerstörung der apikalen Konstriktion der Wurzelspitze; das Wurzelkanalfüllmaterial kann nicht gegen diese Verengung kondensiert werden – es wird hingegen über den physiologischen Apex hinaus, in das umgebende Gewebe überpresst und kann dort eine Fremdkörperreaktion auslösen. Im Oberkiefer Regio 3 bis 8 kann auf diese Weise Material in die Kieferhöhle gelangen. Die Arbeitslänge wird mittels eines Messröntgens oder elektronisch ermittelt und endet etwa 1mm vor dem anatomischen, röntgenologisch sichtbaren Apex des Zahnes. [27][70]
3.1 Wurzelanatomie der Zähne 3-8 im Oberkiefer

Die Oberkiefer-Canini besitzen überwiegend eine Wurzel mit einem Wurzelkanal, in 30% der Fälle können diese gekrümmt sein, mit bis über 30mm Länge sind sie die längsten Zähne.

Der 1.Oberkiefer-Prämolar besitzt in 79-92% der Fälle eine zweigeteilte Wurzel mit 2 Wurzelkanälen, er ist etwa 21-22mm lang.

Der 2.Oberkiefer-Prämolar besitzt in 60-75% eine Wurzel mit einem Wurzelkanal.

Der 1.Oberkiefer-Molar ist der größte und meist behandelte der Molaren, er besitzt 3 Wurzeln mit 3 Wurzelkanälen und 4 Wurzelkanäle in bis zu 96% der Fälle.

Der 2.Oberkiefer-Molar besitzt 3 Wurzeln mit 3 Wurzelkanälen. [8]

Der 3.Oberkiefer-Molar (Weisheitszahn) ist sehr variabel in ihrer Morphologie, meist besitzt er 2-3 Wurzelkanäle. [9]

Die palatinale Wurzel der Oberkiefermolaren ragt in 20% in die Kieferhöhle, in 40% reicht sie unter 0,5mm an die Kieferhöhle heran und in 50% ist sie der Kieferhöhle näher als dem harten Gaumen. [8]

3.2 Foramen apicale

Das Foramen apicale an der Wurzelspitze, ist der Eintrittspunkt des Gefäß-Nervenstranges in den Wurzelkanal. Viele Wurzeln besitzen allerdings mehrere (2-3) Foramina, in 78-93% befinden sie sich an der lateralen Wand der Wurzeln und nicht an deren tiefsten Stelle.

Das Foramen physiologicum, die apicale Konstriktion, stellt die anatomisch engste Stelle des Wurzelkanals dar. Sie stimmt nicht mit der röntgenologisch sichtbaren Wurzelspitze überein sondern befindet sich in 50-98% bis zu 3mm, meist jedoch etwa 0,5-1mm vor dem Apex. [9]

3.3 Limit der Wurzelkanalfüllung

Der Erfolg einer Wurzelkanalbehandlung in Relation zu der Stelle wo die Wurzelkanalfüllung apikal endet, ist der meist untersuchte Aspekt vieler Studien. Einige Autoren befinden die
CDJ (cemento-dentin-junction) als das optimale Limit der Wurzelkanalfüllung, andere die apicale Konstriktion (die nicht mit der CDJ übereinstimmen soll). Wieder andere messen 0,5-1mm vom röntgenologischen Apex entfernt und bestimmen so das optimale Limit.

Langeland empfahl in einer Vielzahl von Studien, die Wurzelkanalfüllung an der apikalen Konstriktion enden zu lassen um Reaktionen des periapikalen Gewebes zu vermeiden. Er verweigert diesbezüglich jegliche Messungen, da der Abstand zwischen der anatomischen Wurzelspitze und der apikalen Konstriktion von Wurzel zu Wurzel stark variiert. Weiter führt er aus, dass die CDJ klinisch nicht zu bestimmen wäre und somit bei der Aufbereitung und Füllung der Wurzelkanäle nicht herangezogen werden kann. [54]

4 Wurzelkanalfüllmaterial

Die definitive Wurzelkanalfüllung erfolgt unter Anwendung eines volumenstabilen Kernmateriales (Wurzelstift) kombiniert mit einer erhärtenden Wurzelkanalfüllpaste (Sealer). [9][72]

1867 beschrieb Bowman Guttapercha erstmals als Wurzelkanalfüllmaterial und ab 1948 wurde es, als Alternative zu Amalgam verwendet um Kavitäten zu füllen.

1922 wurde Kalziumhydroxid von Herrmann in die Endodontie eingeführt. [9]

1950 Entwicklung der N2 Methode durch Sargenti. [73]

1954 kam der erste Sealer auf Epoxidharzbasis unter dem Namen AH26 auf den Markt. [9]

4.1 Sealer

Die erhärtende Wurzelkanalfüllpaste (Sealer) hat die Aufgabe die Inkongruenz zwischen der Wurzelkanalwand und dem Wurzelkanalstift dimensionsstabil, unlöslich und gleichzeitig biokompatibel auszufüllen. Sealer sind ein Gemisch aus einem Pulver mit röntgendichten Metallionen (z.B. Zinkoxid; Bariumsulfat; Titanoxid) und eines Desinfiziens, welches im Wurzelkanal antimikrobiell wirksam ist (z.B. Eugenol; Bisepoxyphenol; Paraformaldehyd).
Reine Pastenfüllungen sind ungeeignet, da im Zuge des Einbringens meist Luftblasen entstehen, zudem weisen sie eine gewisse Schrumpfung während des Aushärtens auf. [4] [9] [72]

Verschiedene Produkte unterschiedlicher Zusammensetzung stehen heute zur Verfügung:

a. Sealer auf Zinkoxid-Eugenol-Basis: Aptal-Harz™ (Speiko); Hermetic™ (Lege Artis)

Die erste Komponente dieser Pasten besteht aus einem zinkoxidhaltigen Pulver, welches mit der zweiten Komponente, einer eugenolhaltigen Flüssigkeit vermischt wird. Dadurch entsteht das nach der in Gewebsflüssigkeit lösliche Zinkeugenolat.

b. Sealer auf Epoxidharz-Basis: AH 26™ und AH plus™ (Dentsply DeTrey)

Im umliegenden Gewebe setzt AH 26 anfangs während der Abbindereaktion zytotoxisch wirkendes Formaldehyd in geringen Mengen frei. Hingegen setzt das nachfolgende Produkt AH plus kein Formaldehyd mehr frei. Beide Produkte verfügen über eine gute Randdichtigkeit im Wurzelkanal.

c. Sealer auf Methakrylat-Basis: Hydron™ (Hydron Canada)

d. Sealer auf Polyketon-Basis: Diaket™ (Espe, Seefeld)

1951 wurde Diaket erstmals erwähnt, insgesamt wird diese Wurzelfüllpasten als gut randdicht, biokompatibel und dimensionsstabil beschrieben.

e. Sealer auf Polydimethylsiloxan-Basis: RoekoSeal Automix ™ (Roeko)
Roeko Seal ist gut gewebeverträglich und dichtet gut ab, diese Pasten sind mit jenen auf Epoxidharz-Basis zu vergleichen.

f. Sealer auf Kalziumhydroxid-Basis: Apexit™ (Ivoclar Vivadent); Sealapex™ (Kerr)

g. Sealer auf Glasionomer-Basis: Ketac-Endo™ (3M ESPE)

Ketac-Endo ist weitgehend gewebeverträglich und wird im periapikalen Gewebe nicht resorbiert. Studien zeigten, dass es jedoch die höchste Wasseraufnahme im Vergleich zu anderen Wurzelfüllpasten aufwies.

h. Sealer auf Guttapercha-Basis:

Diese Pasten bestehen aus einer Guttaperchalösung und einem Lösungsmittel (Chloroform: Chloropercha™; Eukalyptusöl: Eucapercha™). Sie gelten heute als historisch, da beide Materialien eine erhebliche Schrumpfung aufweisen und Chloroform zudem kanzerogen und zytotoxisch wirkt.

Das Kaltfüllsystem GuttaFlow™ (Roeko) jedoch kombiniert RoekoSeal Automix™(Roeko) mit 40-45µm großen Guttapercha-Partikel und soll aufgrund der dadurch erhöhten Fließfähigkeit das Wurzelkanalsystem besser abdichten.

i. Adhäsiv-Sealer: Resilon/Epiphany™ (Jeneric Pentron); Real Seal™ (SybronEndo):

Eine adhäsive Anhaftung und damit bessere Randdichtigkeit zwischen Sealer und Wurzelkanalwand/Wurzelstift konnte in Studien bisher noch nicht ausreichend gezeigt werden.

i. Sealer auf Zinkoxid-Eugenol-Basis mit medikamentösen Zusätzen: N2™ (Hager & Werken); Endomethasone™ (Septodont):

N2 enthält Paraformaldehyd und ist aufgrund seiner zytotoxischen und allergisierenden Wirkungen heute obsolet. Endomethasone enthält trotz des angeblich nicht mehr
zugesetzten Paraformaldehyd Kortikosteroide, die lokal immunsupprimierend wirken, die Entzündungssymptomatik verschlechtern und heute als obsolet gelten. [9] [27] [70] [71] [72] [74]

4.2 Wurzelkanalstifte

a. halbfeste Gutta percha-Stifte:

Bei 55-60°C sind sie plastisch verformbar und dehnen sich etwas aus, durch Abkühlen gehen sie wieder in die ursprüngliche Form zurück und schrumpfen dabei ein wenig. [9] [27] [70] [71] [72]

b. feste Wurzelkanalstifte:

Feste Wurzelkanalstifte können aufgrund ihrer Steifigkeit nicht kondensiert werden, daher erhöht sich im Vergleich zu Gutta percha die Wahrscheinlichkeit von Randundichtigkeiten in den gekrümmten Wurzelkanälen, wie Studien zeigten. Zudem erschweren sie eine Revision des Zahnes enorm. [71] [72]

- Silberstifte werden aufgrund ihrer Korrosionseigenschaften heute nicht empfohlen.
- Titanstifte korrodieren zwar nicht, sollen aber den Wurzelkanal ungenügend abdichten. [9] [27] [70] [71] [72]

5 Endodontie und Kieferhöhle

In der Endodontie gebräuchliche Materialien, die in die Kieferhöhle eingebracht werden können, neben einer mechanischen Irritation eine lokale Entzündungsreaktion bis hin zu Nekrosen der Schleimhaut bewirken und damit die Anhaftung von Schimmelpilzen erleichtern. Vor allem kann zinkoxidhaltiges Wurzelfüllmaterial (Endomethasone™, N2™, Aptal-Harz™, Hermetic™) das Wachstum von Aspergillus fumigatus in der Kieferhöhle triggern. [1][4][5][6][8][9]

5.1 Natriumhypochlorit:
NaOCl wird in der Endodontie zur Wurzelkanaldesinfektion verwendet, es löst vitales wie devitales Gewebe auf und wirkt antibakteriell in nekrotischem Gewebe. Allerdings kann eine massive Entzündungsreaktion im periradikulären Gewebe hervorrufen werden, wenn es unter Druck in den Wurzelkanal eingebracht wird und über die Wurzelspitze hinaus in das umliegende Gewebe gelangt. Dort führt die gewebsauflösende Wirkung zu Nekrosen einer möglichen sekundären Entzündungsreaktion und erleichtert somit die Anhaftung von Schimmelpilzen. [8]

5.2 Kalziumhydroxid:
Ca(OH)₂ hat sich als medikamentöse Einlage zwischen zwei Sitzungen bewährt, gelangt es allerdings über den Apex hinaus, kann es zu Gewebsirritationen bis hin zu einer Entzündung der Kieferhöhenschleimhaut führen. Das Ausmaß der Gewebsreaktion hängt aber mit der Menge des überpressten Kalziumhydroxid zusammen. [8]

5.3 Guttapercha:
5.4 Zinkoxid-Eugenol:

Autoren zeigte jedoch keine der Proben eine Wachstumsbeschleunigende Wirkung. Basierend auf diesen Ergebnissen, vermuten Odell et al eher einen Zusammenhang zwischen der Entzündungsreaktion mit folglichem Hemmung des mukoziliaren Transportes und dem Auftreten von Fungus Balls, als dem Einfluss von gelöstem Zinkoxid auf das Pilzwachstum. Weiter vermuten sie, dass der physiologische Zink-Serumgehalt von $100 \pm 20\text{mg/l}$ ausreichend ist, um den Pilz zu ernähren. [75]

Auf diese Weise lässt sich das lange durchschnittliche Intervall von etwa 4-6 Jahren zwischen endodontischer Behandlung und Diagnose des Fungus Ball erklären. [5] [6] [7] [75]
XI IMPLANTOLOGIE

1 Historischer Überblick

1807 wurden die ersten Implantate von Jourdan und Magiolo beschrieben, es handelte sich um konische Goldrohre die mit einer vierarmigen Kralle in einer leeren Alveole verankert wurden. Darauf wurde ein Stiftzahn aufgesetzt.

1886 setzte Younger ein Spätimplantat durch Bildung einer künstlichen Alveole.

1913 verwendete Greenfield ein wurzelförmiges Hohlimplantat aus einer Platin-Iridium-Legierung.

Am Ende der 1930er Jahre verwendete man in der Chirurgie und später auch in der Implantologie nichtoxidierende Metalle wie Chrom, Molybdän und Kobalt.

Als Vater der modernen, heutigen Implantologie wird Formigini bezeichnet, er verwendete eine Heliokolloidal-Schraube aus Tantal.

In den 1950er und -60er Jahren verwendete man meistens subperiostale Implantate, die Befestigung erfolgte nur zwischen Knochen und Periost und zeigte sich wenig erfolgreich.

In den 1970er Jahren hat man sich wieder verstärkt enossalen Implantaten hingewendet. Leonhard Linkow verwendete so genannte Blattimplantate entlang derer sich jedoch Entzündungen gut ausbreiten konnten. Per-Ingvar Brånemark prägte wie kein anderer die heutige, moderne Implantologie – das von ihm entwickelte System mit dazugehörigen Implantaten wurde bis heute nur wenig modifiziert. [29]

2 Moderate Implantologie

Heute wird eine Osseointegration des eingebrachten Implantates angestrebt; sie wurde von Bränemark als direkte strukturelle und funktionelle Anlagerung von lebendem, geordnetem Knochen an die Oberfläche eines prothetisch belasteten Implantats ohne Bildung von Weichgewebe definiert. [29]

2.1 Faktoren für eine erfolgreiche Osseointegration

- **Biokompatibilität** der Implantate. Wir verwenden am häufigsten Titan und seine Legierungen (Aluminium, Zirkonoxid). Zudem muss das Implantat korrosionsbeständig sein und seine Oberfläche eine Oxidschicht besitzen.

- **Raue Implantatoberfläche** (sandgestrahlt, geätzt)

- **Atraumatische Präparation** des Implantatbettes durch ausreichende Kühlung des Bohrers, scharfe Bohrinstrumente sowie niedertouriges, schonendes bohren.

- **Primärstabilität** von 15-20 Ncm unmittelbar nach Einbringung des Implantates. Sie ist mechanisch bedingt und hängt vom Knochenangebot (Implantat ist von mind. 1-2 mm Knochen periimplantär umgeben) sowie der Implantatform (konisch) bzw. gewählter Implantatlänge (mind. 8-10 mm) und Durchmesser (mind. 3 mm) ab. Bei einer Primärstabilität von über 50 Ncm kann es zu Nekrosen kommen, bei einer zu geringen Primärstabilität kommt es zur bindegewebigen Einheilung.

- **Einheilphase** von 3-6 Monaten in denen das Implantat nicht belastet wird. [29 [76]

2.2 Die Implantatoperation

Wir unterscheiden eine **Sofortimplantation** von einer Früh- sowie Spätimplantation. Erstere erfolgt unmittelbar nach der Zahnextraktion und wird nur in Einzelfällen angewendet.
Eine **Frühimplantation** bezeichnet das Einbringen von Implantaten bis 3 Monate nach der Extraktion, eine **Spätimplantation** erfolgt hingegen erst nach 6-12 Monaten. Je nach Implantationszeitpunkt ist die Atrophie des Kieferkammes mehr oder weniger fortgeschritten und bedingt eine Augmentation. \[^{[29,76]}\]

Zunächst erfolgt die Schnittführung (Kieferkamm- bzw. Zahnfleischrandschnitt mit vertikaler Entlastung) um den Knochen darzustellen. Danach wird die Implantatposition mittels eines Rosenbohrers angekörnt. Wichtig ist, dass der Mindestabstand zum Nachbarzahn (Implantatradius + 2 mm) bzw. Nachbarimplantat (Implantatradius + mind. 3 mm) eingehalten wird.

Jetzt erfolgt die Pilotbohrung mit einem 2mm dünnen Bohrer um die Länge und Ausrichtung des Implantates zu kontrollieren und möglicherweise zu verändern.

Nun wird das Bohrloch entsprechend des vorher-mittels eines Panoramaröntgen oder besser eines DVT-ausgewählten Implantates aufbereitet. Dies erfolgt mit speziellen Bohrern, die der Länge und Form des Implantates entsprechen.

Das Implantat wird unter Drehmomentkontrolle eingebracht, die Primärstabilität wird überprüft; bei ausreichender Primärstabilität wird der Lappen spannungsfrei vernäht. \[^{[29,76]}\]

2.3 Knochenaugmentation

Um eine Osseointegration zu gewährleisten, muss das Knochenangebot ausreichend vorhanden sein, sodass das Implantat beim Setzen allseits von mind. 1-2 mm Knochen umgeben ist bzw. müssen vertikal mind. 10mm und horizontal > 6 mm Knochenlager gegeben sein. Ist das nicht der Fall, muss augmentiert werden um das Implantat dauerhaft zu verankern.

Wir unterscheiden **osteoinductive** von **osteokonduktiven** Materialien zur Knochenaugmentation. Osteoinductive Materialien regen die Knochenneubildung an, während osteokonduktive Materialien als Leitgerüst für den einwachsenden Knochen dienen.
Körpereigenes, autogenes Knochenmaterial, vor oder während der Implantatoperation entnommen, ist osteoinduktiv und –konduktiv. Goldstandard.

Xenogenes Knochenmaterial stammt meist vom Rind (Bio Oss ®) und ist osteokonduktiv.

Alloplastisches Knochenmaterial (Bone Ceramic ®) ist synthetisch hergestellt und wirkt osteokonduktiv. \[29\] \[76\]

Externe Augmentationstechniken (Kieferkammaugmentation)

- **Simultane Augmentation** im Rahmen der Implantation. Wir verwenden das Prinzip der Knochenregeneration durch Defektabdeckung, welches als „guided bone regeneration“ (GBR) bezeichnet wird. Voraussetzungen sind eine suffiziente Höhe von 10mm sowie eine Breite von > 3mm des Knochenlagers. Die Vorteile dieser „two-layer grafting technique“ sind der Erhalt von Ästhetik und Volumen sowie ein möglicher Knochengewinn von 3-4mm. Verwendete Materialien sind einerseits ein Knochenersatzmaterial und andererseits eine Barrieremembran sowie Pins für die Ruhigstellung der Membran.

- **Zweizeitige Augmentation** im Rahmen einer präimplantologischen Kieferkammrekonstruktion mittels Knochenblöcken. So ist es möglich komplexe Kieferkammdefekte zu decken. Entnahmestellen sind die Regio linea obliqua des aufsteigenden Unterkieferastes für 3 x 1 x 0,5 cm große Blöcke oder für Defekte darüber hinaus der Beckenkamm. Indikationen sind eine Breite von < 3mm sowie ein vorhandenes vertikales Defizit.

Interne Augmentationstechnik (Sinuslift)

Die Sinusbodenelevation setzen wir im atrophlen Oberkiefer, bei einer vertikalen Knochendimension von < 10 mm ein. Somit wird der Alveolarfortsatz erhöht, das Lumen der Kieferhöhle wird verringert.

- **Simultaner Sinuslift** wenn vertikal > 4 mm und horizontal > 5-6 mm Knochenlager vorhanden sind. Eine Primärstabilität von mind.15-20 Ncm muss gewährleistet sein.
- **Zweizeitiger Sinuslift** wenn vertikal < 4 mm Knochen vorhanden sind. Die Implantation erfolgt nach einer Einheilphase von 4-12 Monaten.

Es gibt zwei Operationsverfahren, einerseits den lateralen Sinuslift und andererseits den transkrestalen Sinuslift:

Der **Laterale Sinuslift** erfolgt über ein Knochenfenster in der lateralen Sinuswand. Von bukkal wird ein 1,5 cm langer Knochendeckel präpariert und nach kranial geschlagen, unter Erhalt der Schneider’schen Membran. Der so entstandene Hohlraum wird nun mit Knochenersatzmaterial aufgefüllt und mit einer Membran abgedeckt. Dieses Verfahren weist ein geringes Komplikationsrisiko auf.

Der **Transkrestale Sinuslift** erfolgt über eine Implantatbohrung im Alveolarkamm. Die Sinusschleimhaut wird, ohne sie zu perforieren, über diesen Zugang abgehoben und das Knochenersatzmaterial kann eingebracht werden. Somit wird der entstandene Hohlraum aufgefüllt. [76]

2.4 Komplikationen der Sinusbodenelevation

Die häufigste **intraoperative** Komplikation bei Sinusbodenelevationen ist eine Perforation der Kieferhöhlenschleimhaut mit einer Häufigkeit von 20-60%. Perforationen von 5-10mm werden mit einer Kollagen Membran abgedeckt. [77]

Kleinere Einrisse heilen normalerweise spontan. [77] [78]

Postoperative, die Kieferhöhlenschleimhaut betreffende Komplikationen von Sinusbodenelevationen können akute oder chronische Sinusitiden, Schwellungen und Störungen der physiologischen Funktion der Zilien durch Fremdkörper sein. [79]
In einer Studie mit 35 Patienten, die im Zuge einer Sinusbodenelevation intraoperativ auftretende Perforationen der Kieferhöhlenschleimhaut <10mm aufwiesen, entwickelte 1 (2,9%) Patient eine chronische Sinusitis maxillaris und ein (2,9%) weiterer eine oroantrale Fistel. [77]

Eine Sinusitis maxillaris entwickelte sich in 0-27% der Fälle nach einer Sinusbodenelevation. [80]

In einer Studie von Timmenga et al mit 156 Patienten entwickelten 7 (4%) eine subakute und 2 (2%) Patienten eine chronische Sinusitis maxillaris. [80] In einer weiteren Studie mit 17 Patienten entwickelte 1 (5.8%) Patient postoperativ eine chronische Sinusitis maxillaris. [81]

3 Implantate und Kieferhöhle

Die mikroskopische Untersuchung des dunkelbraun-rot Materials ergab einen Fungus Ball mit dicht verflochtenen, dichotom verzweigten und septierten Hyphen. Histologisch wurden polypöse Schleimhaut sowie Entzündungszellen gefunden. [82]
Verschiedene Studien an Menschen und Tieren zeigten jedoch, dass die alleinige Protrusion von Implantaten in die Kieferhöhle in keinem Zusammenhang mit Komplikationen der Sinusschleimhaut steht. \[83\]

Petruson et al konnte endoskopisch zeigen, dass die Mukosa der Kieferhöhle keinerlei Entzündungszeichen aufwies wenn Implantate diese perforierten. \[83\]

In einer Studie mit 83, die Kieferhöhenschleimhaut perforierenden Implantaten, entwickelte kein Patient (von 70) nach einer 20-jährigen Beobachtungsdauer klinische oder radiologisch sichtbare Anzeichen für eine Sinusitis maxillaris. \[83\]

In einer weiteren Studie mit 23 Implantaten von 9 Patienten, die in die Kieferhöhle hineinragten, zeigte kein Patient Symptome einer Sinusitis maxillaris. \[78\]
XII MATERIAL UND METHODE

392 (91,2%) Patienten wurden operativ, mittels der endoskopisch funktionellen Operation der Nasennebenhöhlen (FESS - functional endoscopic sinus surgery) behandelt.

Radiologische Befunde in Form von präoperativ durchgeführten und im PACS (picture archiving and communication system) gespeicherten NNH-CTs, konnten wir mit der freundlichen Unterstützung eines Radiologen der Universitätsklinik für Radiologie, Abteilung für Neuroradiologie am LKH Graz, bei 102 (35,3%) Patienten mit der sicheren Diagnose einer Kieferhöhlen-Mykose erheben. Von den verbliebenen 187 (64,5%) Patienten wurden intern aufgenommene oder abgespeicherte Bilddaten die länger zurücklagen, automatisch aus dem System gelöscht; extern durchgeführte NNH-CTs die ebenfalls länger zurücklagen wurden entweder aus dem Archiv entfernt oder gingen aus anderen Gründen verloren. In 18 (9,6%) Fällen konnte das NNH-CT aufgrund von Überlagerungen nicht auf dentogene Ursachen untersucht werden.
Ausschließlich Patienten mit der sicheren Diagnose eines Fungus Ball des Sinus maxillaris sowie einem vorliegenden präoperativen NNH-CT wurden in dieser Studie inkludiert. Statistische Analysen wurden mit SPSS 19.0 mit der Annahme ein p-wertes von <0.05 als signifikant, durchgeführt. Die Studie wurde am 15. März 2013 von der Ethikkommission der Medizinischen Universität Graz bewilligt (Bewilligungsnummer: 25-258 ex 12/13).

1 Endpunkte

Dentogene Faktoren (pathologische Veränderungen und/oder Behandlungen) der Zähne 3-8 sowie fehlende Zähne (Extraktionslücken und/oder Totalprothesen) wurden auf der Seite des Fungus Ball und auf der gesunden Seite evaluiert. Röntgendichte, punktförmige Verkalkungsstrukturen innerhalb des erkrankten Sinus wurden ebenfalls evaluiert.

1.1 Dentogene Ursachen

Folgende Parameter wurden als mögliche dentogene Ursachen einer Kieferhöhlen-Mykose erhoben, wobei nur die Zähne 3-7 aufgrund der anatomisch bedingten Nähe zur Kieferhöhle berücksichtigt wurden:

1. Wurzelbehandelte Zähne;
2. Wurzelbehandelte Zähne, deren Wurzelkanalfüllmaterial über den Apex hinaus geht;
3. Zähne mit einer Parodontitis apicalis;
4. Implantate;
5. Extrahierte Zähne;
6. Totalprothesen und
7. Wurzelreste, die nach unvollständiger Extraktion zurückgeblieben sind.

Extrahierte Zähne sind insofern als dentogener Faktor zu werten, als eine der Extraktion vorausgegangene Wurzelbehandlung mit/ohne Überfüllung und/oder eine Mund-Antrum-Verbindung als knöcherner Defekt post extractionem nicht auszuschließen sind.
1.2 Metalldichte Verkalkungen

Die vorliegenden NNH-CTs wurden auf das Vorhandensein von röntgendichten Einschlüssen untersucht, die als meist zentral in der total oder subtotal verschatteten Kieferhöhle liegende, hyperdense Strukturen definiert wurden. Im CT präsentieren sich diese Kalzifikationen als Knochen- oder Mineraldichte Signalanhebung. Außerdem wurde analysiert, ob zwischen dem Auftreten metalldichter Einschattungen und dem Vorhandensein dentogener Faktoren eine Übereinstimmung besteht.

1.3 Seitenvergleich dentogener Ursachen der erkrankten mit der gesunden Seite

Die Summe aller dentogenen Ursachen der erkrankten Seite wurde mit der der gesunden Seite verglichen, um festzustellen, ob ein Zusammenhang zwischen dentogenen Ursachen und einem Fungus Ball der Kieferhöhle zu finden ist. Außerdem wurde die Anzahl jeder einzelnen dentogenen Ursache der erkrankten mit der der gesunden Seite verglichen, um sichtbar zu machen, welche Befunde der Zähne 3-7 am häufigsten mit einem Pilzball assoziiert werden können.

1.4 Kombinationen dentogener Ursachen auf der Seite der Mykose und auf der gesunden Seite

Auch die tatsächlich in dem Patientenkollektiv vorkommenden Kombinationen von dentogenen Ursachen der erkrankten Seite wurden wieder mit denen der gesunden Seite verglichen, um eine mögliche Korrelation zwischen dem Vorhandensein eines Fungus Ball und der Anzahl dentogener Ursachen eines Patienten festzustellen.
XIII ERGEBNISSE

Von insgesamt 430 Patienten mit der Verdachtsdiagnose einer Kieferhöhlen-Mykose wurden 392 (91,2%) Patienten an der klinischen Abteilung für HNO am LKH-Graz mittels der endoskopisch funktionellen Operation der Nasennebenhöhlen (FESS - functional endoscopic sinus surgery) behandelt.

![Diagramm 1: Häufigkeit eines Fungus Ball der Kieferhöhlen innerhalb der operativ behandelten Patienten](image)

Diagramm 1: Häufigkeit eines Fungus Ball der Kieferhöhlen innerhalb der operativ behandelten Patienten

1 Fungus Ball der Kieferhöhlen

Bei 289 (67,2%) Patienten, davon 186 (64%) Frauen und 103 (36%) Männer, konnte im Zuge der FESS ein Fungus Ball der Kieferhöhlen diagnostiziert werden.

Der Altersdurchschnitt der Patienten betrug 61,7 Jahre (SD 14,0); Männer 62,2 Jahre (SD 13,3) und Frauen 61,4 Jahre (SD 14,4).
Bei 126 (43,6%) Patienten konnte die Mykose rechts, bei 158 (54,7%) Patienten links und bei 5 (1,7%) Patienten rechts und links diagnostiziert werden.

Bei **102 (35,3%) Patienten** konnten wir ein präoperativ durchgeführtes NNH-CT auf mögliche dentogene Ursachen untersuchen. Bei 46 (45%) Patienten konnte die Mykose rechts, bei 55 (54%) Patienten links und bei 1 (1%) Patient rechts und links diagnostiziert werden. In 187 (64,7%) Fällen war kein NNH-CT vorhanden oder konnte aufgrund von Überlagerungen nicht herangezogen werden.

1.1 **Dentogene Ursachen**

Bei **98 (96,1%) Patienten** von 102 konnten wir im NNH-CT **157 (55,7%)** mögliche dentogene Ursachen auf der **erkrankten** und **125 (44,3%)** auf der **gesunden Seite** feststellen. In Frage kommende Zähne sind im Oberkiefer in Regio 3-7 des ersten sowie des zweiten Quadranten.
Bei 4 (3,9%) Patienten von 102 konnten wir im NNH-CT weder mögliche dentogene Ursachen noch metalldichte Verschattungen feststellen.

Diagramm 3: Dentogene Ursachen

*100% = 210 (Dentogene Ursachen) **100% = 102 (Patienten mit NNH-CT)

1.2 Seitenvergleich dentogener Ursachen der gesunden mit der erkrankten Seite

Die höchste Prävalenz dentogener Faktoren auf der Seite des Fungus Ball wiesen Extraktionen (77; 53.1%), gefolgt von Wurzelbehandlungen (47; 56%) und apikalen Parodontitiden (22; 59.5%) auf. Die größte Differenz in der Anzahl dentogener Ursachen im Vergleich der erkrankten zur gesunden Seite war bei überfüllten wurzelbehandelten Zähnen zu sehen (85.7% vs 14.3%). Es besteht eine positive/signifikante Korrelation zwischen dem Vorhandensein dentogener Faktoren (unabhängig von deren Anzahl) und einem Fungus Ball der Kieferhöhlen im Vergleich zur gesunden Seite. (p=0.024, Chi-Quadrat Test, OR 2.72 [95% CI 1.02-7.23]).
Seitenvergleich dentogener Ursachen

<table>
<thead>
<tr>
<th>Ursache</th>
<th>Erkrankte Seite</th>
<th>Gesunde Seite</th>
<th>insgesamt*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extraktion (incl. TP)</td>
<td>77</td>
<td>46,9%</td>
<td>145</td>
</tr>
<tr>
<td>Wurzelbehandlung</td>
<td>47</td>
<td>44%</td>
<td>84</td>
</tr>
<tr>
<td>Parodontitis ap.</td>
<td>22</td>
<td>40,5%</td>
<td>37</td>
</tr>
<tr>
<td>Implantat</td>
<td>4</td>
<td>50%</td>
<td>8</td>
</tr>
<tr>
<td>Überfüllung</td>
<td>6</td>
<td>14,3%</td>
<td>7</td>
</tr>
<tr>
<td>Wurzelrest</td>
<td>1</td>
<td>0%</td>
<td>1</td>
</tr>
<tr>
<td>insgesamt*</td>
<td>157</td>
<td>44,3%</td>
<td>282</td>
</tr>
<tr>
<td>ohne Befund</td>
<td></td>
<td></td>
<td>4</td>
</tr>
</tbody>
</table>

*100%=Summe der dentogenen Ursachen zeilenweise

Tabelle 1: Seitenvergleich dentogener Ursachen

Seitenvergleich dentogener Ursachen

*100%=Summe der dentogenen Ursachen zeilenweise

Diagramm 4: Seitenvergleich dentogener Ursachen
1.3 Kombinationen dentogener Ursachen auf der Seite der Mykose und auf der gesunden Seite

Im Hinblick auf unterschiedliche Kombinationen dentogener Faktoren innerhalb eines einzelnen Patienten, zeigten Extraktionen (40; 38.8%), gefolgt von Wurzelbehandlungen zusammen mit Extraktionen (15; 14.6%) sowie Wurzelbehandlungen allein (13; 12.6%) die höchste Prävalenz auf der erkrankten Seite auf.

Es besteht jedoch keine positive/signifikante Korrelation zwischen der Anzahl dentogener Ursachen eines einzelnen Patienten und eines Fungus Ball der Kieferhöhlen. (p=0.065, Pearson Korrelation)

<table>
<thead>
<tr>
<th>Kombinationen dentogener Ursachen</th>
<th>Mykose Seite</th>
<th>Gesunde Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ursachen</td>
<td>DU</td>
<td>Patienten</td>
</tr>
<tr>
<td>Ex</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>WB + Ex</td>
<td>2</td>
<td>15</td>
</tr>
<tr>
<td>WB</td>
<td>1</td>
<td>13</td>
</tr>
<tr>
<td>WB + PA + Ex</td>
<td>3</td>
<td>9</td>
</tr>
<tr>
<td>PA + Ex</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>WB + PA</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>Impl + Ex</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>WB + Ü + Ex</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>WB + PA + Ü + Ex</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>WB + PA + WR + Ex</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>WB + PA + Ü</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>PA + Impl + Ex</td>
<td>3</td>
<td>1</td>
</tr>
<tr>
<td>----------------</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>WB + Ü</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Ü + EX</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>PA</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ohne Befund</td>
<td>6</td>
<td>5,8</td>
</tr>
</tbody>
</table>

Insgesamt 103 100% **Insgesamt** 101 100%

Legende
- **Ex** – Extraktion (inclusive Totalprothesen)
- **WB** – Wurzelkanalbehandlung
- **PA** – Parodontitis apicalis
- **Impl** – Implantat
- **Ü** – Überfüllung
- **WR** – Wurzelrest

Tabelle 2: Kombinationen dentogener Ursachen

1.4 Röntgendichte Einschlüsse

Von 102 Patienten mit einem Fungus Ball des Sinus maxillaris, deren NNH-CTs befundet werden konnten, ließen sich bei **55 (53,9%) Patienten** metalldichte Verschattungen in der erkrankten Kieferhöhle finden. In 26 (25,5%) Fällen befanden sie sich in der rechten, in 28 (27,5%) Fällen in der linken Kieferhöhle und in 1 (1%) Fall fanden sich bilateral Einschlüsse. Bei 47 (46,1%) Patienten konnten keine punktförmigen Verkalkungen innerhalb der total oder subtotal verschatteten Kieferhöhle gefunden werden, was jedoch nicht die Möglichkeit eines Verlustes von zinkoxidhaltigem Material über das Ostium naturale ausschließt.
Innerhalb der 55 Patienten, die röntgendichte Einschattungen des erkrankten Sinus aufwiesen, befand sich in 26 (25.5%) Fällen die Verkalkungsstruktur rechts, in 28 (27.5%) Fällen links und in 1 (1%) Fall auf beiden Seiten.
1.5 Dentogene Ursachen auf der gleichen Seite wie metalldichte Verschattung

Diagramm 7: Übereinstimmung dentogener Ursachen mit metalldichter Verschattung

*100% = 55 (Patienten mit metalldichten Verschattungen)

2 Kein Fungus Ball der Kieferhöhlen

392 (91,2%) Patienten mit der Verdachtsdiagnose eines Fungus Ball wurden an der klinischen Abteilung für HNO am LKH-Graz mittels der endoskopisch funktionellen Operation der Nasennebenhöhlen (FESS - functional endoscopic sinus surgery) operativ behandelt, dabei konnte bei 103 (26,2%) Patienten intraoperativ kein mykotisches Material in der Kieferhöhe gefunden werden. Davon waren 50 (49%) Männer und 53 (51%) Frauen, der
Altersdurchschnitt der Patienten betrug 57,1 Jahre (SD 17,3); Männer 55,8 Jahre (SD 16,9) und Frauen 58,3 Jahre (SD 17,8).

38 (8,8%) Patienten wünschten keinerlei therapeutische Intervention nach erstmaliger Vorstellung an der klinischen Abteilung für HNO am LKH-Graz.

Von jenen Patienten, deren Verdachtsdiagnose einer Kieferhöhlen-Mykose intraoperativ nicht bestätigt werden konnte, litten 90 (87,4%) Patienten an einer chronische Sinusitis, davon fand sich bei 11 (10,7%) Patienten zusätzlich eine Zyste in der Kieferhöhle, 79 (76,7%) Patienten wiesen keine Zyste auf.

*100%=103 (Patienten ohne Mykose)

Diagramm 8: Diagnosen der Patienten ohne Kieferhöhlen-Mykose
Die **Pathophysiologie** des Fungus Ball der Kieferhöhlen bleibt unklar. Die anatomisch bedingte Nähe zwischen dem Sinus maxillaris und den Zahnwurzeln der Molaren, Prämolaren und Canini bringt die Frage nach einer möglichen Korrelation zwischen entzündlichen Erkrankungen der Zähne und des Zahnhalteapparates, endodontisch behandelten Zähnen sowie akzidentell verursachten iatrogenen oro-antralen Verbindungen und dem Auftreten von Fungus Balls der Kieferhöhlen auf. In der **Literatur** wird in vielen Einzelfall-Berichten der Zusammenhang zwischen Kieferhöhlen-Mykosen und endodontisch behandelten Zähnen bzw. Überfüllungen von wurzelbehandelten Zähnen beschrieben. [12] [31] [32] [69] [82] [84]

Wachstumsbeschleunigende Wirkung. Basierend auf diesen Ergebnissen vermuten die Autoren eher einen Zusammenhang zwischen der Entzündungsreaktion mit folgender Hemmung des mukoziliaren Transportes und dem Auftreten von Fungus Balls, als der Einfluss von gelöstem Zinkoxid auf das Pilzwachstum. Weiter vermuten sie, dass der **physiologische Zink-Serumgehalt** ausreichend ist um den Pilz zu ernähren. [75]

Auf der anderen Seite vermuten einige Autoren, dass dentogene Faktoren eine **chronische (dentogene) Sinusitis maxillaris** verursachen können sobald die Schneider’sche Membran des Kieferhöhlenbodens aufgrund unterschiedlicher pathologischer Prozesse oder auch iatrogen im Rahmen einer Zahnextraktion, perforiert wird. In weiterer Folge kann sich das entzündliche Geschehen in den Sinus ausbreiten und den mukoziliaren Transport der Schneider’schen Membran behindern. Ergänzend dazu kann die entzündliche Reaktion der Schleimhaut die Entstehung eines Fungus Ball begünstigen, indem sie die Anhaftung von Schimmelpilzen erleichtert. [1] [32]

Unserer Kenntnis nach existiert in der Literatur nur ein Einzelfall-Bericht über den Zusammenhang zwischen einer Kieferhöhlen-Mykose in Zusammenhang mit einer oro-antralen Fistel. Die Patientin wurde nach Extraktion des zweiten Molar im Oberkiefer rechts an der Abteilung des Autors vorstellig, nachdem bereits zweimal der Versuch, eine post extraktionem aufgetretene Mund-Antrum-Verbindung zu decken, gescheitert war. Im CT war der rechte Sinus wolkig verschattet; eine Caldwell-Luc Operation sowie histologische Untersuchungen konnten den Verdacht eines Fungus Ball bestätigen. [50]

Ein weiterer Einzelfall berichtet über das Auftreten eines Fungus Ball in Zusammenhang mit in die Kieferhöhle eingebrachten Amalgam. Nach Extraktion des stark entzündeten zweiten Molar im Oberkiefer rechts, entwickelte der Patient Schmerzen in diesem Bereich. Als postoperative Komplikation trat eine schwere lokale Osteitis des Alveolarknochens im Extraktionsbereich auf. Erst zwei Jahre später wurde er an der Abteilung des Autors vorstellig und beschrieb Parästhesien der Zähne im Oberkiefer rechts; Symptome einer Sinusitis wurden nicht beobachtet. Im CT zeigte sich im rechten Sinus maxillaris eine Verschattung mit zentraler Signalanhebung. Im Zuge der FESS (functional-endoscopic-sinus-surgery) konnte ein Stück Amalgam aus dem Sinus entfernt werden, die histologische Untersuchung der umgebenden Schleimhaut bestätigte einen Fungus Ball der rechten Kieferhöhle. [85]
Das **Ziel** der vorliegenden Studie war, mögliche dentogene Faktoren bei Patienten mit vorliegendem Fungus Ball des Sinus maxillaris zu evaluieren und zu untersuchen, ob eine Korrelation mit einer Kieferhöhlen-Mykose besteht oder nicht.

Bis heute fanden wir unseres Wissens nach in der **Literatur** nur viele Einzelfall-Berichte sowie einige wenige mit größeren Patientenzahlen, die vor allem endodontisch behandelte Zähne des Oberkiefers- und Unterkieferbereiches in einen Zusammenhang mit Kieferhöhlen-Mykosen bringen konnten. Wir konnten jedoch keine größere Studie finden, die sich mit sämtlichen möglichen dentogenen Faktoren, sowie der Kombinationen derer innerhalb einzelner Patienten mit der Diagnose eines Fungus Balls beschäftigte.

Legent et al publizierten eine Studie mit 15 Fällen einer Kieferhöhlen-Mykose, davon waren 9 (60%) Fälle eindeutig mit Wurzelkanalfüllmaterial innerhalb des Sinus assoziiert. Legent et al veröffentlichten eine weitere Studie mit 85 Fungus Balls des Sinus maxillaris, davon wiesen 85% der Patienten überfüllte wurzelbehandelte Zähne auf. [55]

Mensi et al untersuchten 102 Fälle einer Kieferhöhlen-Mykose auf das Vorhandensein endodontischer Behandlungen. 89.2% der Patienten wiesen im Vergleich zu einer Kontrollgruppe von 306 Patienten (36%) wurzelbehandelte Zähne auf; somit folgerten sie, dass Patienten mit wurzelbehandelten obere Canini, Prämolaren und Molaren ein 14-fach höheres Risiko haben an einem Fungus Ball des Sinus maxillaris zu erkranken; weiter hatten jene Patienten mit Fungus Balls mehr als doppelt so viele Wurzelbehandlungen im fraglichen Bereich des Oberkiefers als jene ohne Fungus Balls. [35]

Im Gegensatz zur **vorliegenden Studie** wurden in vorhergehenden Untersuchungen andere dentogene Faktoren wie Implantate, apikale Parodontitiden sowie Wurzelreste nicht inkludiert.

Zusätzlich untersuchten wir, da der Fungus Ball vorwiegend einseitig auftritt, auch die **gesunde Seite des Sinus maxillaris** auf ebendiese dentogenen Faktoren und verglichen sie mit den Ergebnissen der erkrankten Gegenseite. Obwohl viele der von uns untersuchten Patienten auch auf der gesunden Seite dentogene Faktoren aufwiesen, waren die der...
erkrankten Seite signifikant höher; 98 (96,1%) Patienten wiesen dentogene Faktoren auf der Seite des Fungus Ball auf.

Keinen signifikanten Zusammenhang konnten wir hingegen zwischen der Anzahl dentogener Faktoren eines einzelnen Patienten und dem Vorhandensein einer Kieferhöhlen-Mykose feststellen; somit vermuten wir, dass schon eine einzige pathologische Veränderung/Behandlung die den Boden des Sinus maxillaris penetriert, ausreicht um einen Fungus Ball zu entwickeln.

Bei einem vorliegenden dentogenen Faktor ist die Wahrscheinlichkeit eine Kieferhöhlen-Mykose zu entwickeln um das 2.7-fache höher, als bei Abwesenheit einer dieser Faktoren in unserer Untersuchung. Überfüllte wurzelbehandelte Zähne waren, wie auch in vorhergehenden Studien gezeigt werden konnte, der auffälligste Faktor mit 85.7% auf der erkrankten vs 14.3% auf der gesunden Seite.

Interessanterweise fanden wir in unserem Patientenkollektiv nur insgesamt 7 Patienten, die Implantate im Oberkieferseitenzahn-Bereich aufwiesen, die erkrankte und die gesunde Seite waren jeweils 4 Mal betroffen. Es bedarf sicherlich noch weiterer Studien mit größeren Patientenzahlen, um eine aussagekräftigere statistische Auswertung dieses Faktors zu erhalten.

Ein weiterer Focus wurde auf röntgendichte Einschlüsse innerhalb des Sinus bei vorliegendem Fungus Ball der Kieferhöhlen gerichtet. Ältere Studien berichteten über metalldichte Verschattungen in 45-76 % der Fälle. [6] [11] [42] [43] [45] [47] [52]

Diese Zahlen sind analog zu den Ergebnissen unserer Studie, in der wir Kalzifikationen in 53.9% der erkrankten Kieferhöhlen finden konnten. Zwischen dem Vorhandensein metalldichter Verschattungen und wurzelbehandelter, überfüllter Zähne im Seitenzahnbereich des Oberkiefers gab es eine Übereinstimmung von 9.1%.

Untersuchungen zeigen konnten, dass die Einschlüsse tertiäres Kalziumphosphat enthielten und somit Stoffwechselprodukte des Pilzes sind, da dieser Kalziumphosphat nicht selbst produzieren kann. \[^{11}\][^{52}]

Um Licht auf den Entstehungsmechanismus der metalldichten Einschattungen zu werfen, untersuchten Krennmaier et al. sowie Lenglinger et al. jene Einschattungen von Patienten mit/ohne Fungus Ball der Kieferhöhlen und verglichen sie mit Wurzelkanalfüllpasten. In beiden Studien wiesen die Einschlüsse von Patienten mit einem Fungus Ball signifikant höhere Dichtewerte auf als jene, die bei Patienten ohne Fungus Ball gefunden werden konnten; weiter entsprachen die mittleren Dichtewerte der Einschlüsse aus erkrankten Kieferhöhlen nahezu exakt jenen der Wurzelfüllpasten. \[^{43}\][^{48}]

Obwohl die Pathophysiologie des Fungus Ball der Kieferhöhlen ungeklärt bleibt, konnten wir in dieser Studie zeigen, dass dentogene Faktoren wie wurzelbehandelte Zähne, wurzelbehandelte überfüllte Zähne, apikale Parodontitiden sowie Extraktionen signifikant mit dem Auftreten eines Fungus Ball des Sinus maxillaris korrelieren. Hingegen scheint die Anzahl dentogener Faktoren eines einzelnen Patienten keinen signifikanten Einfluss zu haben.

Diese Ergebnisse fordern im Rahmen endodontischer Maßnahmen, Zahnextraktionen sowie in der Diagnostik bestehender Pathologien der Canini, Prämolaren und Molaren des Oberkiefers, ein engmaschiges Monitoring sowie zumindest eine Aufklärung über die Möglichkeit einen Fungus Ball in einer der Kieferhöhlen zu entwickeln.

XVI LITERATURVERZEICHNIS

 Eur Arch Otorhinolaryngol. 2007 May;264(5):461-70.

3 Stammberger H. Pilz-bedingte Erkrankungen der Nasennebenhöhlen. Symposium Pilze im Innenraum, Raiffeisenhof Graz 2006

18 Schwenzer N, Ehrenfeld M. Mund-Kiefer-Gesichtschirurgie. Georg Thieme Verlag
 Sep;135(3):349-55. Review.
20 Reith W. Moderne Bildgebung der Nasennebenhöhlen. Der Radiologe. 2005, 45, S. 797-
 806.
 Kieferhöhlenfensterung über den mittleren vs. den unteren Nasengang
22 Kaschke O. Entzündliche Erkrankungen der Nasennebenhöhlen- Synergismus HNO und
 Oralchirurgie, Oralchirurgie Journal 2/2008
23 Kretzschmar DP, Kretzschmar JL. Rhinosinusitis: Review from a dental perspective.
 No. 2, S. 128-135.
24 Schleier P, Bräuer C, Küttner K, Müller A, Schumann D. Video-assisted endoscopic sinus
 revision for treatment of chronic, unilateral odontogenic maxillary sinusitis. Mund Kiefer
 Feb;65(2):223-8

36 Mukherji SK, Figueroa RE, Ginsberg LE, Zeifer BA, Marple BF, Alley JG, Cooper
 LL, Nemzek WR, Yousem DM, Jones KR, Kupferberg SB, Castillo M. Allergic fungal
 sinusitis: CT findings. Radiology 1998; 207(2): S.417-422

38 European Position Paper on Rhinosinusitis and Nasal Polyps, Volume 50, Supplement
 23, März 2012, S.65-66

39 Ponikau JU, Sherris DA, Kern EB, Homburger HA, Frigas E, Gaffey TA, Roberts GD.
 74(9):877-84.

41 Braun, H; Buzina, W; Freudenschuss, K; Beham, A; Stammberger, H 'Eosinophilic fungal
 rhinosinusitis': a common disorder in Europe? Laryngoscope. 2003; 113(2):264-269

42 Nicolai P, Lombardi D, Tomenzoli D, Villaret AB, Piccioni M, Mensi M, Maroldi R. Fungus
 ball of the paranasal sinuses: experience in 160 patients treated with endoscopic

43 Lenglinger FX, Krennmair G, Müller-Schelken H, Artmann W. Radiodense
 concretions in maxillary sinus aspergillosis: pathogenesis and the role of CT

44 Granville L. Fungal sinusitis: histologic spectrum and correlation with culture. Hum

Beck-Mannagetta J. Vortrag: Odontogene Ursachen für die Sinusitis maxillaris. LKH Graz; Jänner 2014.

Acham S, Jakse N. Perioperative Medikation bei zahnärztlich-chirurgischen Eingriffen. Quintessenz 2012; 63(7): 917-929

Arge der ÖGZMK für Orale Chirurgie Medizin und Radiologie http://www.ocmr.at

Städtler P. Vorlesung: Zahnerhaltungskunde I+2. LKH Graz; 7.+ 8. Semester 2010/11

Schäfer E, Hickel R. Wurzelkanalfüllpasten und –füllstäfle. DZZ 55 (00) Stellungnahme der DGZMK V 1.0, Stand 6/99. Gemeinsame Stellungnahme der DGZMK und der DGZ

