Diplomarbeit

Die Bedeutung von BNP und NT-proBNP in Diagnostik, Prognoseabschätzung und Therapiemonitoring kardialer Erkrankungen

Literaturrecherche mit anschließender Konklusion

eingereicht von

Peter Michael Zechner

Mat.Nr.: 0310271

zur Erlangung des akademischen Grades

Doktor der gesamten Heilkunde

(Dr. med. univ.)
an der
Medizinischen Universität Graz

ausgeführt an der
Medizinischen Universitätsklinik Graz, Klinische Abteilung für
Kardiologie

unter der Anleitung von

Prof. Dr. Friedrich Fruhwald

und

Prim. Doz. Dr. Herbert Wurzer

Peter Michael Zechner
Eidesstattliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe, andere als die angegebenen Quellen nicht verwende habe und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am 01.06.2009

Unterschrift

Peter Michael Zechner
Danksagung

Mein besonderer Dank gilt meinen beiden Betreuern Prof. Dr. Friedrich Fruhwald und Prim. Doz. Dr. Herbert Wurzer, die stets bei Problemen und Fragen jeglicher Art verfügbar waren und mich von Beginn an hervorragend unterstützt haben.

Des Weiteren möchte ich an dieser Stelle meinen Eltern Peter und Maria Zechner danken, ohne deren großzügige Unterstützung meine Ausbildung in dieser Form wohl kaum möglich gewesen wäre.

Weiters gebührt mein Dank natürlich all meinen Freunden, die maßgeblich daran beteiligt sind, dass mir meine Studienzeit für immer in schöner Erinnerung bleiben wird.
Inhaltsverzeichnis

1 GRUNDLAGEN ... 13
 1.1 GESCHICHTE DER NATRIURETISCHEN PEPTIDE .. 13
 1.2 PHYSIOLOGIE DER NATRIURETISCHEN PEPTIDE ... 14
 1.3 BNP VERSUS NT-proBNP ... 16
 1.4 EINFLUSSFAKTOREN AUF ZIRKULIERENDE (NT-pro)BNP-SPiegel ... 17
 1.4.1 Niereninsuffizienz .. 17
 1.4.2 Lebensalter und Geschlecht .. 18
 1.4.3 Körpergewicht ... 18

2 DIAGNOSTIK .. 20
 2.1 HERZINSUFFIZIENZ ... 20
 2.1.1 Akute Herzinsuffizienz ... 20
 2.1.2 Chronische Herzinsuffizienz ... 26
 2.2 AKUTES KORONARSYNDROM ... 30
 2.3 RECHTSHERZINSUFFIZIENZ IM RAHMEN DER AKUTEN PULMONALARTERIENEMBOLIE 31

3 PROGNOSEABSCHÄTZUNG ... 35
 3.1 HERZINSUFFIZIENZ ... 35
 3.1.1 Chronische Herzinsuffizienz ... 35
 3.1.2 Akute Herzinsuffizienz ... 38
 3.2 AKUTES KORONARSYNDROM ... 40
 3.3 HERZKLAPPENERKRANKUNGEN ... 43
 3.3.1 Aortenklappe ... 43
 3.3.2 Mitralklappe ... 44
 3.4 PULMONALARTERIENEMBOLIE ... 45

4 THERAPIEMONITORING .. 48
 4.1 HERZINSUFFIZIENZ ... 48

5 ZUSAMMENFASSUNG UND KONKLUSION .. 51
 5.1 HERZINSUFFIZIENZ ... 51
 5.1.1 Akute Herzinsuffizienz ... 51
 5.1.2 Chronische Herzinsuffizienz ... 52

Peter Michael Zechner
5.2 Akutes Koronarsyndrom ... 54
5.3 Herzklappenerkrankung ... 54
5.4 Akute Pulmonalerterienembolie ... 55

6 Lebenslauf ... 56

7 Literaturliste ... 60
Abbildungsverzeichnis

Abbildung 1 Schematische Darstellung der Spaltung von proBNP in BNP und NT-proBNP, sowie deren Freisetzung und Elimination16. Mit freundlicher Genehmigung des Verlages. .. 15

Abbildung 2 Schematische Darstellung der kardioprotektiven Effekte der natriuretischen Peptide20. Mit freundlicher Genehmigung des Verlages. .. 16

Abbildung 3 AUROC für verschiedene BNP Cut-off Levels, ermittelt in der „Breathing not Properly – Study“53. Mit freundlicher Genehmigung des Verlages. .. 23

Abbildung 4 BNP Werte in Abhängigkeit des Herzinsuffizienz Stadiums nach der NYHA Klassifikation53. Mit freundlicher Genehmigung des Verlages. .. 27

Abbildung 5 ROC Kurve für Sensitivität und Spezifität des BNP (in pg/ml) in der Diagnostik einer linksventrikulären Dysfunktion – modifiziert nach Maisel et al.66 .. 28

Abbildung 6 BNP-Levels bei An- und Abwesenheit von RVD. Modifiziert nach Krüger et al.55 .. 33

Abbildung 7 Vergleich der prognostischen Wertigkeit von NT-proBNP, VO2, HFSS und LVEF in einem Kollektiv mit fortgeschrittener chronischer Herzinsuffizienz120. Mit freundlicher Genehmigung des Verlages. .. 38

Abbildung 8 Überlebensraten bei Patienten mit NT-proBNP < bzw. > 5180 pg/ml52. Mit freundlicher Genehmigung des Verlages. .. 40

Abbildung 9 Kaplan-Meier Kurven der kumulierten Todesinzidenz nach 10 Monaten in Abhängigkeit der BNP Erhöhung 40 Stunden nach Symptombeginn129 .. 41

Abbildung 10 Vergleich der medianen NT-proBNP Werte in der SAE- und Event freien Gruppe100. Mit freundlicher Genehmigung des Verlages. .. 46

Abbildung 11 Flowchart eines möglichen Algorithmus zur Abklärung akuter Atemnot in der Notaufnahme. .. 52

Abbildung 12 Flowchart eines an die aktuelle Datenlage angepassten Diagnosealgorithmus bei Verdacht auf Herzinsuffizienz im niedergelassenen oder ambulanten Bereich. .. 53
Tabellenverzeichnis

Tabelle 1 BNP versus NT-proBNP, modifiziert nach Daniels und Maisel\(^\text{22}\).. 17

Tabelle 2 Auswahl der wichtigsten Studien zur diagnostischen Aussagekraft von BNP und NT-proBNP bei Patienten mit akuter Atemnot. Angegeben sind jeweils Daten für einen Cut-off nahe 100 pg/ml und den Schwellenwert mit der besten diagnostischen Treffsicherheit... 25

Tabelle 3 Auswahl an Studien zur Diagnostik einer linksventrikulären Funktionsstörung bei Patienten mit vermuteter Herzinsuffizienz ... 29

Tabelle 4 Cut-off Levels sowie PPV und NPV für die Identifikation einer RVD ... 34

Tabelle 5 Vergleich der Cutoff-Levels sowie der positiv und negativ prädiktiven Werte für verschiedene Assays.... 47
Glossar und Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>AA</td>
<td>aminoacids</td>
</tr>
<tr>
<td>ACS</td>
<td>Akutes Coronarsyndrom</td>
</tr>
<tr>
<td>ALDO</td>
<td>Aldosteron</td>
</tr>
<tr>
<td>AVP</td>
<td>Arginin Vasopressin</td>
</tr>
<tr>
<td>ANP</td>
<td>atrial natriuretic peptide</td>
</tr>
<tr>
<td>AUROC</td>
<td>area under the receiver operating curve</td>
</tr>
<tr>
<td>AUC</td>
<td>area under the curve</td>
</tr>
<tr>
<td>BMI</td>
<td>bodymass index in kg pro m²</td>
</tr>
<tr>
<td>BNP</td>
<td>B-type natriuretic peptide</td>
</tr>
<tr>
<td>c-GMP</td>
<td>cyclic Guanosinmonophosphat</td>
</tr>
<tr>
<td>CNH</td>
<td>cardiac natriuretic hormones</td>
</tr>
<tr>
<td>CNP</td>
<td>C-type natriuretic peptide</td>
</tr>
<tr>
<td>COPD</td>
<td>chronic obstructive pulmonary disease</td>
</tr>
<tr>
<td>CPR</td>
<td>cardiopulmonary resuscitation</td>
</tr>
<tr>
<td>CRP</td>
<td>C-reaktives Peptid</td>
</tr>
<tr>
<td>CRT</td>
<td>cardiac resynchronisation therapy</td>
</tr>
<tr>
<td>DNP</td>
<td>dendroaspis natriuretic peptide</td>
</tr>
<tr>
<td>HFSS</td>
<td>heart failure survival score</td>
</tr>
<tr>
<td>IAP</td>
<td>Instabile Angina pectoris</td>
</tr>
<tr>
<td>ICD</td>
<td>implantable cardioverter defibrillator</td>
</tr>
<tr>
<td>LVEF</td>
<td>left ventricular ejection fraction</td>
</tr>
<tr>
<td>LVD</td>
<td>linksventrikuläre Dysfunktion</td>
</tr>
<tr>
<td>LVSD</td>
<td>linksventrikuläre systolische Dysfunktion</td>
</tr>
<tr>
<td>MACE</td>
<td>major adverse cardiac event</td>
</tr>
</tbody>
</table>
MINS Mitralklappeninsuffizienz
mRNA messenger ribonucleic acid
NPs natriuretic peptides
NPR-A natriuretic peptide receptor - A
NPR-B natriuretic peptide receptor - B
NPR-C natriuretic peptide receptor – C
NPV negative predictive value
NSTEMI Nicht-ST-Hebungsmyokardinfarkt
NT-proBNP N-terminal – pro B-type natriuretic peptide
(NT-pro)BNP in dieser Arbeit: BNP und NT-proBNP als Gruppe
NYHA New York Heart Association
PAE Pulmonalarterienembolie
PCI percutaneous coronary intervention
PPV positive predictive value
proBNP proB-type natriuretic peptide
RR Risk Ratio; relatives Risiko
RVD Rechtsventrikel dysfunktion
RV rechter Ventrikel
RV-Überlastung rechtsventrikuläre Überlastung
SAE serious adverse events
STEMI ST-Hebungsmyokardinfarkt
TVPG Transvalvulärer Druckgradient
USA United States of America
VO2 Sauerstoffaufnahmekapazität

Umrechnung von pmol/l in pg/ml: pmol/l x 8,457 = pg/ml

Peter Michael Zechner
Zusammenfassung

Abstract

BNP and NT-proBNP are released from cardiac myocytes in response to volume or pressure overload. Since its first description in 1988 the importance of BNP and NT-proBNP was studied intensively. In the setting of acute dyspnea both natriuretic peptides provide higher diagnostic accuracy than clinical examination and reduce medical costs and hospital length of stay as well. If chronic heart failure is suspected, BNP and NT-proBNP provide good diagnostic accuracy for the presence of left ventricular dysfunction. However, the use of BNP or NT-proBNP as a screening tool for heart failure in the general population cannot be recommended. BNP and NT-proBNP provide important prognostic information in patients with congestive heart failure, acute coronary syndrome, valvular diseases and pulmonary embolism. In patients with congestive heart failure BNP and NT-proBNP can be used in the evaluation of treatment efficacy. Furthermore, BNP or NT-proBNP guided therapy of heart failure can reduce mortality.
1 Grundlagen

1.1 Geschichte der natriuretischen Peptide

Diese gut 50 Jahre zurückliegenden Entdeckungen relativierten einerseits das bislang gültige Funktionsmodell des menschlichen Herzens, gaben Aussicht auf neue Anwendungsmöglichkeiten dieser natriuretisch wirksamen Substanzen und veranlassten weltweit Wissenschaftler, dieses Gebiet weiter zu beforschen. In der Folge konnte 1983 erstmals ein endokrin wirksames Peptid isoliert werden, welches später von verschiedenen Forschungsgruppen cardiodilatin, cardionatrin, atrial natriuretic factor oder atrial natriuretic polypeptide genannt wurde. Damit war das heute weitläufig als ANP bekannte Hormon entdeckt, und bald war klar, dass nicht nur atriales sondern auch ventrikuläres Myokard die Fähigkeit besitzt, Hormone zu sezernieren.

So gelang es 1988 einer Gruppe um Sudoh ein weiteres natriuretisches Peptid aus Schweinehirnen zu isolieren, welches demzufolge „brain natriuretic peptide“ genannt wurde. Wie sich je-
doch später herausstellte, ist dieser Name nicht wirklich zutreffend, da sich die Hauptproduktionsstätte des BNP in den Herzmuskelzellen der Ventrikel und nicht, wie anfangs angenommen, im Zentralnervensystem befindet. In den folgenden Jahren konnten noch weitere natriuretische Peptide sichergestellt werden. „C-type natriuretic peptide“, welches hauptsächlich in Endothelzellen produziert wird und eine ähnliche chemische Struktur wie BNP aufweist, sowie Urodilatin, ein Peptid, das in der Regulation des Salz- und Wasserhaushaltes eine Rolle spielt und DNP, dessen genaue Funktion nicht restlos geklärt ist.

1.2 Physiologie der natriuretischen Peptide

BNP besitzt als gemeinsames Merkmal mit allen anderen Vertretern der natriuretischen Peptide eine charakteristische biochemische Struktur bestehend aus einem Aminosäurering und einer Disulfidbrücke zwischen zwei Zysteinmolekülen.

Das humane BNP-Gen befindet sich auf Chromosom 1 und kodiert für ein proBNP-Molekül, dessen Signalpeptid die Freisetzung von proBNP_{1-108} regelt. BNP wird hauptsächlich von ventrikulären Kardiomyozyten synthetisiert und sezerniert. Vor der Plasmasekretion erfolgt die Spaltung von ProBNP_{1-108} in das biologisch inaktive N-terminale Fragment proBNP_{1-76}(NT-proBNP) und den biologisch aktiven C-terminalen Teil proBNP_{77-108}(BNP), wobei beide Peptide in äquimolaren Mengen sezerniert werden.\(^\text{12}\) (siehe Abb.1) Obwohl auch atriale Myozyten dazu im Stande sind, kleine Mengen BNP zu produzieren, befindet sich die Hauptproduktionsstätte des B-type natriuretic peptide in den Herzkammern.\(^\text{13}\) Im Gegensatz zu ANP, das größtenteils in atrialen Granula gespeichert wird, wird BNP bei entsprechender Simulation schlagartig produziert und freigesetzt.\(^\text{14}\)

Vermehrte ventrikuläre Wanddehnung als Folge akuter oder chronischer Druck- bzw. Volumenbelastung gilt als wichtigster Stimulus für die Produktion von BNP. Tierexperimente haben gezeigt, dass die endokrine Antwort des Herzens auf diese Reize jedoch stark davon abhängt, wie akut der Stimulus auftritt.\(^\text{15}\)

Zusammengefasst hat das natriuretische System in vielfacher Hinsicht protektive Effekte auf
das Herzkreislaufsystem und schützt das gesunde Herz vor zu starker und Druck- und Volumenbelastung. (siehe Abb. 2)

Abbildung 2 Schematische Darstellung der kardioprotektiven Effekte der natriuretischen Peptide20. Mit freundlicher Genehmigung des Verlages.

Die biologischen Effekte der natriuretischen Peptide werden über membrangebundene Rezeptoren (NPRs) vermittelt, deren bislang 3 identifiziert werden konnten. ANP und BNP binden hauptsächlich am NPR-A Rezeptor, CNP vorwiegend am NPR-B Rezeptor. Die Bindung eines natriuretischen Peptides an diesen Rezeptoren vermittelt die Freisetzung des Second Messengers c-GMP, der für die meisten Endorganeffekte verantwortlich ist. Neben der Bindung an den C-Rezeptor (NPR-C) erfolgt der Abbau über eine Endopeptidase, welche durch Öffnung der Ringstruktur die Peptide inaktiviert.21

1.3 BNP versus NT-proBNP

Wie bereits beschrieben, entstehen BNP und NT-proBNP durch die Spaltung von proBNP und werden in gleichem Verhältnis freigesetzt. Durch die Verschiedenheiten in den Eliminationsme-

Peter Michael Zechner
chanismen ergeben sich unterschiedliche Plasmaverweilzeiten für BNP und NT-proBNP. BNP besitzt aufgrund des unverzöglichen Abbaus über den NPR-C Rezeptor eine Halbwertszeit von nur ca. 20 Minuten. Da NT-proBNP jedoch hauptsächlich renal eliminiert wird und deswegen eine Halbwertszeit von 1 – 2 Stunden aufweist, findet man deutlich höhere Plasmaspiegel als für BNP. Aufgrund dieser Umstände sieht Clerico BNP als besseren Biomarker für die Erfassung akuter hämodynamische Veränderungen, während NT-proBNP besser als allgemeiner Krankheitsmarker geeignet sei. Die meisten Experten sehen beide Biomarker jedoch als gleichwertig an, sofern der Anwender die Unterschiede kennt und berücksichtigt. Tabelle 1 fasst die wichtigsten Unterschiede zwischen BNP und NT-proBNP nochmals zusammen.

<table>
<thead>
<tr>
<th></th>
<th>BNP</th>
<th>NT-proBNP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aminosäuren</td>
<td>32</td>
<td>76</td>
</tr>
<tr>
<td>Molekulargewicht (kD)</td>
<td>3,5</td>
<td>8,5</td>
</tr>
<tr>
<td>Halbwertszeit (min)</td>
<td>20</td>
<td>60 – 120</td>
</tr>
<tr>
<td>Clearance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hauptmechanismus</td>
<td>Endopeptidase</td>
<td>renal</td>
</tr>
<tr>
<td>Rezeptor</td>
<td>NPR-C</td>
<td>renal</td>
</tr>
<tr>
<td>Biologische Aktivität</td>
<td>ja</td>
<td>nein</td>
</tr>
<tr>
<td>Messbereich (pg/ml)</td>
<td>0 – 5000</td>
<td>0 – 35000</td>
</tr>
</tbody>
</table>

Tabelle 1 BNP versus NT-proBNP, modifiziert nach Daniels und Maisel

1.4 Einflussfaktoren auf zirkulierende (NT-pro)BNP-Spiegel

1.4.1 Niereninsuffizienz

Man weiß, dass Patienten mit Niereninsuffizienz deutlich höhere BNP und NT-proBNP-Werte aufweisen, als Nierengesunde. Der hier zugrunde liegende Mechanismus scheint ein sehr komplexer zu sein, und es ist nicht endgültig geklärt, was nun wirklich für diese NP-Erhöhung verantwortlich ist. Es ist wohl von Fall zu Fall verschieden, da Patienten mit schwerer Niereninsuffi-
zioni

enz häufiger an Herzinsuffizienz leiden und zumeist auch ein höheres Lebensalter aufweisen, beides Umstände, die mit erhöhten BNP-Werten einhergehen. In jedem Fall wird ab einer glomerulären Filtrationsrate von < 60 ml/min/1,7m² für BNP und NT-proBNP die Verwendung eines etwas höheren Cutoff-Levels empfohlen.22

1.4.2 Lebensalter und Geschlecht

Es existieren mehrere große Arbeiten, die den Einfluss von Alter und Geschlecht auf die Konzentrationen von BNP und NT-proBNP untersuchten. Zumeist konnten bei Frauen signifikant höhere NP-Werte gemessen werden als bei Männern gleichen Alters.24, 25 Nur eine Subanalyse der Breathing not Properly-Study konnte hinsichtlich dieser Fragestellung keinen signifikanten Unterschied finden.26 Trotzdem schließt sich auch der Autor dieser Arbeit der Meinung an, dass Frauen generell höhere Spiegel an natriuretischen Peptiden aufweisen und man dies bei der Interpretation von Testergebnissen im Auge behalten sollte.

Eben zitierte Studien untersuchten auch den Einfluss des Lebensalters auf (NT-pro)BNP und kamen zu dem Ergebnis, dass mit steigendem Alter auch die Höhe der zirkulierenden NP-Spiegel steigt. Als Ursachen hierfür werden erhöhte Prävalenz an Herzinsuffizienz und Niereninsuffizienz sowie verminderte Expression des NPR-C Receptors diskutiert.22

1.4.3 Körpergewicht

Mehrfach konnte gezeigt werden, dass übergewichtige Patienten deutlich geringere BNP Levels aufweisen als jene mit normalem Körpergewicht.27-29 Die zugrunde liegenden Ursachen werden kontrovers diskutiert und es existieren unterschiedliche Theorien in der Fachliteratur. So sind manche Autoren der Meinung, dass dieses Phänomen auf eine vermehrte Expression des NPR-C Receptors zurückzuführen ist.30 Die Tatsache, dass aber NT-proBNP, das ja bekanntlich nicht über den NPR-C Receptor abgebaut wird, bei erhöhtem BMI ebenfalls in geringeren Mengen zu finden ist, macht die Beteiligung anderer Mechanismen sehr wahrscheinlich. Die Ergebnisse der Dallas Heart Studie sprechen ebenfalls gegen die Theorie der vermehrten Rezeptorexpression und weisen eventuell auf eine vermehrte (NT-pro)BNP Produktion als Ursache für vergleichsweise höhere NP Werte schlanker Individuen hin.31
2 Diagnostik

2.1 Herzinsuffizienz

2.1.1 Akute Herzinsuffizienz

Akute Atemnot ist eine der häufigsten Ursachen für die Konsultierung internistischer Notaufnahmen und kann durch eine Vielzahl verschiedener Erkrankungen bedingt sein. Neben der akuten Herzinsuffizienz zählen Asthma bronchiale, COPD und die akute Pulmonalarterienembolie zu den wichtigsten Ursachen für dieses Symptom.

Die klinische Manifestation einer akuten kardialen Dekompensation kann sich sehr variabel

Eine große Zahl klinischer Studien untersuchte die diagnostische Wertigkeit von (NT-pro)BNP bei der Beurteilung von Patienten mit akuter Atemnot. So beschrieben bereits 1994 Davis et al. in einer Arbeit den Nutzen einer BNP Bestimmung bei der Beurteilung dyspnoischer Patienten in der Notaufnahme.40 Es folgten wesentlich größer angelegte Studien, die sich ebenfalls dieser Fragestellung annahmen. Im Folgenden wird aufgrund der extrem großen Studienzahl zu diesem Themengebiet nur auf die wichtigsten und größten Arbeiten eingegangen.

Die angegebene Prävalenz einer Herzinsuffizienz als Enddiagnose lag in den Studien zwischen $34\%^{41}$ und $83\%^{42}$. Vergleiche der medianen BNP Werte in den beiden Patientengruppen konnten einheitlich zeigen, dass Patienten mit Herzinsuffizienz signifikant höhere BNP Levels aufweisen als jenen ohne Zeichen einer Herzinsuffizienz. ($575\text{ pg/ml} – 1076\text{ pg/ml}$ vs. $38\text{ pg/ml} – 243\text{ pg/ml}^{41, 43-49}$, bzw. 115 pmol/l vs. 33 pmol/l^{50}) Ein ebenfalls statistisch signifikanter Unterschied zwischen den beiden Gruppen konnte für NT-proBNP gefunden werden ($3275 – 6823\text{ pg/ml}$ vs. $131 – 2716\text{ pg/ml}^{43, 49, 51}$ bzw. 920 pmol/l vs. 50 pmol/l^{42}). Darüber hinaus korrelierten sowohl
BNP als auch NT-proBNP sehr gut mit dem Schweregrad der Herzinsuffizienz (NYHA Stadium).\(^{52, 53}\)

In den meisten Arbeiten wurden Spezifität und Sensitivität sowie diagnostische Accuracy für unterschiedliche Cut-off Werte berechnet. Während manche Autoren Spezifität und Sensitivität für den häufig empfohlenen Cut-off Wert von 100 pg/ml beschrieben, präsentierten andere den Cut-off Level mit der höchsten diagnostischen Accuracy, also der Kombination von Spezifität und Sensitivität. Bei einem Schwellenwert von rund 100 pg/ml lag die beschriebene Sensitivität bei 90% - 97%, die Spezifität schwankte zwischen 27% und 76%. Bei positiv prädiktiven Werten für das Vorliegen einer Herzinsuffizienz von maximal 79% konnten gute negativ prädiktive Werte von 88% bis 93% gefunden werden.\(^{46, 47, 49, 53, 54}\) Die Verwendung eines geringeren Cut-off Wertes von 50 pg/ml führte nur zu einer geringfügigen Steigerung der Sensitivität.\(^{53}\)

In Studien, die höhere Schwellenwerte untersuchten, lagen negativ und positiv prädiktive Werte bei einem Cut-off von 200 - 300 pg/ml zwischen 75% und 100% bzw. 87% und 97%, Sensitivität und Spezifität schwankten zwischen 78% und 100% bzw. 86% und 90%.\(^{46-49}\) Ein Cut-off von 400 pg/ml ergab eine Spezifität von 95% bei einem positiv prädiktiven Wert von 90%.\(^{47}\)

Vergleicht man die Schwellenwerte mit der jeweils höchsten diagnostischen Treffgenauigkeit miteinander so sieht man, dass die optimalen Cut-off Levels in den verschiedenen Studien deutlich von einander abweichen. Ermittelten Dao et al. einen optimalen Cut-off von 80 pg/ml, so ergaben die Untersuchungen von Ray et al. oder Logeart et al. deutlich höhere Schwellenwerte (250 – 300 pg/ml) für die Diagnose einer akuten Herzinsuffizienz.\(^{44, 46, 47}\) Diese Diskrepanz könnte mitunter darauf zurückzuführen sein, dass die Arbeiten der beiden letztgenannten Autoren ein älteres und schwerer erkranktes Patientengut untersuchten und die Prävalenz einer rechtsventrikulären Dysfunktion in der Nicht-Herzinsuffizienz Gruppe sehr hoch war. Aus früheren Arbeiten ist bekannt, dass sowohl höheres Alter\(^{24}\), als auch das Vorliegen einer Rechtsherzbelastung im Rahmen pulmonaler Erkrankungen zu einer moderaten BNP Erhöhung führen\(^{55, 56}\), was bei der Interpretation von Laborergebnissen bedacht werden sollte.

Die „Breathing Not Properly – Study“ - die mit Abstand größte und an mehreren internationa-
len Zentren durchgeführte Studie - fand für einen Cut-off Level von 150 pg/ml die höchste dia-
gnostische Treffgenauigkeit (AUC = 0,84), wobei ein Schwellenwert von 100 pg/ml bei nahezu
gleicher Treffsicherheit (AUC = 0,83) zu einer deutlichen Erhöhung des negativ prädiktiven Wert-
es führte.53 (siehe Abb. 3)

Abbildung 3 AUROC für verschiedene BNP Cut-off Levels, ermittelt in der „Breathing not Properly – Study“53.
Mit freundlicher Genehmigung des Verlages.

Arbeiten zur diagnostischen Aussagekraft von NT-proBNP konnten durchwegs ähnliche Er-
genbisse finden. Bei einem Schwellenwert um 300 pg/ml fand man in Übereinstimmung mit den
Ergebnissen zu BNP sowohl hohe negativ prädiktive Werte (89% - 99%) als auch eine hohe Sen-
sitivität (80% - 99%) für die Diagnose einer Herzinsuffizienz.41, 49, 51 Eine Erhöhung des Cut-offs
auf rund 900 pg/ml führte zu besseren positiv prädiktiven Werten (76% - 84%) und einer höheren
Spezifität (81% - 85%).49, 51 Diese Ergebnisse konnten größtenteils auch in der groß angelegten
Multicenterstudie von Januzzi et al. bestätigt werden, jedoch sprechen die dort gewonnen Daten
für die Verwendung altersabhängiger Cut-off Werte zur Identifikation einer Herzinsuffizienz.
Während zum Ausschluss einer Herzinsuffizienz ein allgemeiner Cut-off von 300 pg/ml hervor-
ragend geeignet war, konnte nur durch die Verwendung altersadaptierter Schwellenwerte (< 50
Jahre: 450 pg/ml, 50 – 75 Jahre: 900 pg/ml, > 75 Jahre: 1800 pg/ml), vernünftig hohe positiv

Peter Michael Zechner
prädiktive Werte für das Vorliegen eine Herzinsuffizienz erreicht werden.52

Direkte Vergleiche der diagnostischen Wertigkeit von BNP und NT-proBNP konnten zeigen, dass beide Biomarker ähnlich gute Qualitäten in der Diskriminierung zwischen kardial und pulmonal bedingter Atemnot besitzen, BNP jedoch eventuell zum Ausschluss einer Herzinsuffizienz besser geeignet ist, während NT-proBNP-Assays eine etwas höhere Spezifität aufweisen.41,57

In Tabelle 2 werden die Ergebnisse der wichtigsten Arbeiten zu BNP und NT-proBNP nochmals zusammengefasst und verglichen.
<table>
<thead>
<tr>
<th>Marker</th>
<th>Autor</th>
<th>n</th>
<th>Cut-off</th>
<th>PPV %</th>
<th>NPV %</th>
<th>Spez</th>
<th>Sens</th>
<th>Acc %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>Maisel⁵³</td>
<td>1586</td>
<td>100</td>
<td>0,79</td>
<td>0,89</td>
<td>0,76</td>
<td>0,90</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>150</td>
<td>0,83</td>
<td>0,85</td>
<td>0,83</td>
<td>0,85</td>
<td>0,84</td>
</tr>
<tr>
<td>BNP</td>
<td>Ray⁴⁷</td>
<td>308</td>
<td>100</td>
<td>0,65</td>
<td>0,88</td>
<td>0,59</td>
<td>0,90</td>
<td>0,72</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250</td>
<td>0,87</td>
<td>0,83</td>
<td>0,90</td>
<td>0,78</td>
<td>0,84</td>
</tr>
<tr>
<td>BNP</td>
<td>Müller⁴⁹</td>
<td>251</td>
<td>100</td>
<td>0,75</td>
<td>0,93</td>
<td>0,61</td>
<td>0,96</td>
<td>0,80</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>160</td>
<td>0,80</td>
<td>0,87</td>
<td>0,73</td>
<td>0,90</td>
<td>0,83</td>
</tr>
<tr>
<td>BNP</td>
<td>Logeart⁴⁶</td>
<td>163</td>
<td>100</td>
<td>0,77</td>
<td>0,83</td>
<td>0,31</td>
<td>0,96</td>
<td>0,78</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>300</td>
<td>0,94</td>
<td>0,75</td>
<td>0,87</td>
<td>0,88</td>
<td>0,88</td>
</tr>
<tr>
<td>BNP</td>
<td>Dao⁴⁴</td>
<td>250</td>
<td>100</td>
<td>0,92</td>
<td>0,96</td>
<td>0,94</td>
<td>0,94</td>
<td>0,94</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>80</td>
<td>0,90</td>
<td>0,98</td>
<td>0,92</td>
<td>0,98</td>
<td>0,95</td>
</tr>
<tr>
<td>BNP</td>
<td>Villacorta⁴⁸</td>
<td>70</td>
<td>200</td>
<td>0,97</td>
<td>1,00</td>
<td>0,97</td>
<td>1,00</td>
<td>0,99</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Müller⁴⁹</td>
<td>251</td>
<td>292</td>
<td>0,71</td>
<td>0,90</td>
<td>0,53</td>
<td>0,95</td>
<td>0,76</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>825</td>
<td>0,84</td>
<td>0,84</td>
<td>0,81</td>
<td>0,87</td>
<td>0,84</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Januzzi⁵¹</td>
<td>599</td>
<td>300</td>
<td>0,62</td>
<td>0,99</td>
<td>0,68</td>
<td>0,99</td>
<td>0,83</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>900</td>
<td>0,76</td>
<td>0,94</td>
<td>0,85</td>
<td>0,90</td>
<td>0,87</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Lainchbury⁴¹</td>
<td>205</td>
<td>340</td>
<td>0,76</td>
<td>0,89</td>
<td>0,87</td>
<td>0,80</td>
<td>0,85</td>
</tr>
</tbody>
</table>

Tabelle 2 Auswahl der wichtigsten Studien zur diagnostischen Aussagekraft von BNP und NT-proBNP bei Patienten mit akuter Atemnot. Angegeben sind jeweils Daten für einen Cut-off nahe 100 pg/ml und den Schwellenwert mit der besten diagnostischen Treffsicherheit

Mehrere Untersuchungen zur Treffgenauigkeit verschiedener diagnostischer Maßnahmen kamen zu dem Ergebnis, dass BNP und NT-proBNP sehr starke Prädiktoren für das Vorliegen einer ventrikulären Funktionsstörung sind⁴² und deutlich bessere diagnostische Qualitäten aufweisen als eine genaue klinische Untersuchung.⁴⁷, ⁵¹ Wie McCullough et al. in einer Subanalyse der „Breathing Not Properly – Study“ nachweisen konnte, führt die Kombination aus klinischer Un-
tersuchung und BNP Bestimmung zu einer signifikanten Steigerung der diagnostischen Aussage-
kraft gegenüber einer der beiden Methoden alleine.54 Konnte in dieser Arbeit in 43% mittels kli-
nischer Untersuchung keine exakte Diagnose gestellt werden, so führte die zusätzliche Informati-
on des BNP Levels zu einer Senkung des Anteils unklarer Diagnosen auf 11%.

Die BASEL – Studie untersuchte 452 Patienten mit akuter Atemnot und ergab, dass eine zu-
sätzliche BNP Bestimmung zu einer signifikanten Reduktion der Krankenhausaufenthaltsdauer,
der Gesamtkosten sowie auch der Notwendigkeit einer intensivmedizinischen Betreuung führt. Die 30 Tage Mortalitätsrate konnte jedoch nicht gesenkt werden.58 Ähnliche Ergebnisse brachte eine randomisierte Multicenterstudie (IMPROVE-CHF Study) von Moe et al..59 Durch die initiale Zusatzinformation des NT-proBNP Wertes konnte die Aufenthaltsdauer in der Notaufnahme um 21%, die 60 Tage Rehospitalisierungsrate um 35% und die Gesamtkosten pro Patient von US$ 6129 auf US$ 5158 gesenkt werden. Darüber hinaus führte eine zusätzlich zur klinischen Unter-
suchung durchgeführte NT-proBNP Bestimmung zu einer signifikanten Steigerung der diagnosti-
schen Treffgenauigkeit.

\subsection*{2.1.2 Chronische Herzinsuffizienz}

Die linksventrikuläre systolische Dysfunktion (LVSD) besitzt aktuell eine Prävalenz von rund 2\%60 und führt zu einer deutlichen Verminderung der Lebensqualität. Da eine Therapie mit ACE-
Hemmern das Outcome sowohl im asymptomatischen als auch im fortgeschrittenen Stadium ei-
er chronischen Herzinsuffizienz verbessert,61 erscheint es wichtig, die korrekte Diagnose zu
einem möglichst frühen Zeitpunkt zu stellen, um das Weiterschreiten der Krankheit verhindern
bzw. hinauszögern zu können.

In mehreren Studien konnte gezeigt werden, dass BNP und NT-proBNP im Rahmen der chroni-
schen Herzinsuffizienz erhöht sind und gut mit dem funktionellen Schweregrad nach NYHA kor-
rellieren.53, 62 (siehe Abb. 4) Aufgrund der ebenso guten Korrelation mit der Linksvентrikelfunkti-
on wurde auch die Wertigkeit von BNP und NT-proBNP als Screeningparameter im allgemein-
Medizinischen- und intrahospitalen Bereich evaluiert. Im Folgenden wird zwischen Screeningstudien in einer Standardpopulation und Arbeiten, welche die diagnostische Bedeutung von (NT-pro)BNP in einem Patientenkollektiv mit bereits vermuteter chronischer Herzinsuffizienz prüften differenziert.

Mehrere Studien untersuchten die diagnostische Treffsicherheit bei Patienten, die in einer allgemeinmedizinischen Praxis vorstellig wurden und vom Allgemeinmediziner aufgrund des Verdachts einer zugrunde liegenden Herzinsuffizienz zur weiteren kardiologischen Abklärung überwiesen wurden. Als Goldstandard zur Beurteilung der systolischen Linksvventrikelfunktion wurde die transthorakale Echokardiographie herangezogen. Die Prävalenz einer LVD lag in diesen Arbeiten zwischen 9% und 29%, Patienten mit LVD hatten statistisch signifikant höhere BNP-bzw. NT-proBNP-Werte als jene ohne LVD. Für BNP ergab sich bei einem Cut-off von 76 pg/ml eine Sensitivität von 97%, eine Spezifität von 84% und eine Accuracy von 96%. In der Arbeit zu NT-proBNP fand man bei einem Schwellenwert von 125 pg/ml eine Sensitivität von 97%, Spezifität von 46%, NPV von 99% und PPV von 15%. Die Verwendung eines altersabhängigen Cut-off Wertes führte in dieser Arbeit zu keiner Steigerung der diagnostischen Treffi-
cherheit. Wright et al. konnten durch die Zusatzinformation des NT-proBNP Levels eine signifikante Steigerung der diagnostischen Treffsicherheit (vor allem bei Ausschluss einer linksventrikulären Funktionsstörung) um 21% gegenüber der alleinigen klinischen Untersuchung beobachten.65

Zwei Studien der Forschungsgruppe um Maisel66,67 weisen ein ähnliches Studiendesign auf, jedoch wurden die Patienten sowohl auf das Vorliegen einer systolischen als auch diastolischen Herzinsuffizienz evaluiert, während in zuvor zitierten Arbeiten nur die systolische Ventrikelfunction untersucht wurde. Für nahezu denselben Cut-off Wert (75 pg/ml) konnte eine deutlich höhere Spezifität (97% - 98%) für die Diagnose einer LVD gefunden wurde. (siehe Abb. 5) In Einklang mit diesen Beobachtungen konnte mehrfach gezeigt werden, dass BNP und NT-proBNP auch bei alleiniger diastolischer Herzinsuffizienz erhöht und zur Identifikation einer solchen Funktionsstörung geeignet sind.68,69

Abbildung 5 ROC Kurve für Sensitivität und Spezifität des BNP (in pg/ml) in der Diagnostik einer linksventrikulären Dysfunktion – modifiziert nach Maisel et al.66

In Tabelle 3 sind einige Arbeiten zur diagnostischen Aussagekraft von BNP und NT-proBNP
im Rahmen chronischer Herzensuffizienz aufgelistet.

<table>
<thead>
<tr>
<th>Marker</th>
<th>Autor</th>
<th>n</th>
<th>Setting</th>
<th>Cut-off</th>
<th>PPV %</th>
<th>NPV %</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>Cowie64</td>
<td>122</td>
<td>Verdacht auf LVD</td>
<td>76 pg/ml</td>
<td>70</td>
<td>98</td>
</tr>
<tr>
<td>BNP</td>
<td>Maisel67</td>
<td>150</td>
<td>Verdacht auf LVD</td>
<td>27 pg/ml</td>
<td>31</td>
<td>96</td>
</tr>
<tr>
<td>BNP</td>
<td>Krishnaswany66</td>
<td>400</td>
<td>Verdacht auf LVD</td>
<td>87 pg/ml</td>
<td>62</td>
<td>91</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Pfister70</td>
<td>150</td>
<td>kardiologische Patienten</td>
<td>360 pg/ml</td>
<td>29</td>
<td>96</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>Gustafsson63</td>
<td>367</td>
<td>Verdacht auf LVD</td>
<td>125 pg/ml</td>
<td>15</td>
<td>99</td>
</tr>
</tbody>
</table>

Tabelle 3 Auswahl an Studien zur Diagnostik einer linksventrikulären Funktionsstörung bei Patienten mit vermuteter Herzensuffizienz

Aufgrund der guten Korrelation der natriuretischen Peptide mit der Ventrikelfunction erhoffte man sich, mit BNP und NT-proBNP endlich einen geeigneten Parameter für das Herzensuffizienzscreening in der Gesamtbevölkerung gefunden zu haben. Diese Hypothese wurde in vielen groß angelegten Studien geprüft, die Ergebnisse konnten die Erwartungshaltungen jedoch nur teilweise erfüllen.

Die größte Arbeit wurde an 3177 Patienten der Framingham – Studie durchgeführt und untersuchte die Aussagekraft von BNP als Screeningparameter für linksventrikuläre Dysfunktion und -Hypertrophie in der Bevölkerung.71 BNP zeigte zwar durchwegs gute Qualitäten beim Ausschluss einer schweren systolischen Dysfunktion (NPV > 98%), der positiv prädiktive Wert war zu niedrig, um ein Screening mittels BNP empfehlen zu können. Ähnliche Ergebnisse konnten sowohl für BNP als auch NT-proBNP in mehreren kleiner angelegten Studien gefunden werden.72-74

Zwei große retrospektive Studie an Probanden der Allgemeinbevölkerung im Alter von 24 bis 75 Jahren konnten zeigen, dass BNP als Screening test eine linksventrikuläre systolische Dysfunktion zuverlässig ausschließt und bei Hochrisikopatienten die Anzahl der notwendigen Echo-

Peter Michael Zechner
kardiographien eventuell vermindern kann.75, 76 Demgegenüber steht jedoch die Tatsache, dass die Echokardiographie keine anerkannte Methode für das Screening in der Standardbevölkerung ist bzw. die entstehenden Kosten bei 70\% falsch positiven Testergebnissen nicht zu verantworten wären. Redfield et al. kamen in einer breit angelegten Untersuchung zu dem Ergebnis, dass ein Screening hinsichtlich asymptomatischer Herzensuffizienz mittels BNP in 10 – 40 \% der Fälle unnötigerweise zu einer echokardiographischen Evaluierung führen würde, und darüber hinaus bis zu 60\% der Erkrankten durch eine BNP Bestimmung nicht erfasst werden könnten.69

2.2 Akutes Koronarsyndrom

Mit den kardialen Troponinen I und T stehen Biomarker mit sehr hoher Spezifität hinsichtlich der Detektion einer Myokardnekrose zur Verfügung, die aus dem täglichen Routinebetrieb nicht mehr wegzudenken sind. Obwohl im Rahmen eines akuten koronaren Ereignisses der Haupteinsatzbereich von BNP und NT-proBNP sicherlich in der Prognoseabschätzung liegt, existieren Daten, die den natriuretischen Peptiden auch diagnostische Fähigkeiten in diesem Setting zusprechen.

Es konnte mehrfach gezeigt werden, dass es im Rahmen eines akuten Koronarsyndroms zum signifikanten Anstieg der Serumwerte für BNP und NT-proBNP kommt.79-83 Ob diese Erhöhung jedoch zwingend auf eine begleitende linksventrikuläre Funktionsstörung in Folge vermehrten Untergangs an Herzmuskelzellen zurückzuführen ist, konnte bisher nicht sicher belegt werden. So konnten einerseits in mehreren Arbeiten gute Korrelationen des BNP mit der Linksventrikelfunktion nachgewiesen werden84, 85, andererseits existieren jedoch Daten, die darauf hindeuten, dass die isolierte myokardiale Ischämie ebenso zu einem Anstieg des BNP bzw. NTproBNP

2.3 Rechtsherzinsuffizienz im Rahmen der akuten Pulmonalarterienembolie

zukommen zu lassen.92,93

Das Auftreten einer rechtsventrikulären Dysfunktion gilt als gefürchtete Komplikation im Rahmen der akuten PAE und wird hauptsächlich vom Ausmaß der thrombembolischen Obstruktion im Lungenkreislauf bestimmt.92 Der durch die Thrombembolie und konsekutive Vasokonstriktion bedingte Anstieg der rechtsventrikulären Nachlast kann in weiterer Folge zu akutem Rechtsherzversagen führen und erhöht das Risiko für einen komplikationsreichen Verlauf enorm.92,94,95 Deswegen erscheint es aus therapeutischer Sicht wichtig, hämodynamisch stabile Patienten mit Zeichen einer Rechtsherzinsuffizienz möglichst früh zu identifizieren, um diesen womöglich eine aggressivere Therapie zukommen zu lassen.96,97

In den vorliegenden Studien lag die Prävalenz einer BNP Erhöhung zwischen 33\% und 44\%,55,98,99 NT-proBNP lag in 58\% - 84\% der Fälle über dem Normwert.56,99,100 Vergleicht man diese Zahlen mit der beschriebenen Prävalenz einer RV-Dysfunktion (46\% - 76\%)99-101, sieht man, dass eine Korrelation zwischen erhöhten BNP Werten und eingeschränkter Rechtsventrikelfunktion wahrscheinlich ist. Dies bestätigen auch die Ergebnisse von Vuilleumier et al., die einen signifikanten Prävalenzanstieg der BNP Erhöhung bei Anwesenheit von RVD (65\% vs. 22\%; p = 0,003)99 finden konnten.

Studien, welche BNP Werte hinsichtlich des Schweregrades der Pulmonalarterienembolie verglichen, konnten zeigen, dass Patienten mit massiver PAE signifikant höhere BNP und NT-proBNP Werte aufweisen als jene mit nicht- bzw. submassiver Lungenembolie.100,102

Einige Studien untersuchten die Aussagekraft von BNP zur der Identifikation einer rechtsventrikulären Dysfunktion.55,99,102-105 Zur Beurteilung der Rechtsventrikelfunktion wurde entweder die transthorakale Echokardiographie oder die Computertomographie als Gold-Standard gewählt, die BNP-Werte wurden gegenüber dem nur in einer Arbeit verblindet.99 In all diesen Arbeiten wurden Patienten hinsichtlich des Vorliegens einer rechtsventrikulären Dysfunktion in 2 Gruppen unterteilt und die medianen BNP-Werte in den Gruppen verglichen. Einheitlich wurden in der RVD-Gruppe signifikant höhere Werte als in der Non-RVD-Gruppe (170 – 494 pg/ml vs. 36 - 75 pg/ml) gemessen.55,99,102-105 (siehe auch Abb. 7) Der Cut-off Level für die Identifikation einer RV-Dysfunktion lag in diesen Studien zwischen 90 und 100 pg/ml bei einer AUROC von
0,72 – 0,94. Während die positiv prädictiven Werte für die Identifikation einer RVD nur zwischen 67% und 88% lagen, ergab sich in fast allen Arbeiten ein negativ prädictiver Wert von über 90%. Ähnliche Ergebnisse erbrachte auch die Studie von Pieralli et al., in der Patienten anhand der BNP-Höhe in 3 Terzilen unterteilt wurden und anschließend die Häufigkeit einer RVD in diesen 3 Gruppen verglichen wurden. So konnte bei keinem Patienten aus der 1. Terzile (BNP < 85 pg/ml) eine RVD gefunden werden, während in der mittleren Terzile (BNP 85 – 478 pg/ml) bereits 75% und in der 3. Terzile (> 478 pg/ml) 100% der Patienten Zeichen einer RVD aufwiesen.101

Abbildung 6 BNP-Levels bei An- und Abwesenheit von RVD. Modifiziert nach Krüger et al.55

Die Aussagekraft von NT-proBNP bei der Identifikation einer RVD wurde in zwei Studien untersucht, wobei diese Arbeiten unterschiedliche Populationen untersuchten, und somit nur eingeschränkt miteinander vergleichbar sind. Hatten Pruszczyk et al. in ihre Studie auch Patienten mit massiver PAE (systolischer BP < 90 mmHg) eingeschlossen100, galt hämodynamische Instabilität in der Studie von Vuilleumier et al. als Ausschlusskriterium99. Als Cutoff Level wurde NT-proBNP < 300 pg/ml bzw. ein altersabhängiger Wert gewählt. Konsistent war in beiden Stu-
dien, dass bei Patienten mit RVD signifikant höhere NT-proBNP Levels zu finden waren als bei jenen Probanden ohne RVD (median: 1369 - 4650 pg/ml vs. 170 – 363 pg/ml99, 100). Der beschriebene positiv prädiktive Wert liegt bei 65\%, die negativ prädiktiven Werte bei 75\% bzw. 100\%. (siehe auch Tab. 4)

<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Cut-off Level (pg/ml)</th>
<th>PPV %</th>
<th>NPV %</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>90</td>
<td>88</td>
<td>96</td>
<td>Yardan103</td>
</tr>
<tr>
<td>BNP</td>
<td>100</td>
<td>77</td>
<td>100</td>
<td>Logeart102</td>
</tr>
<tr>
<td>BNP</td>
<td>90</td>
<td>67</td>
<td>94</td>
<td>Krüger55</td>
</tr>
<tr>
<td>BNP</td>
<td>100</td>
<td>71</td>
<td>72</td>
<td>Vuilleumier99</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>300</td>
<td>65</td>
<td>75</td>
<td>Vuilleumier99</td>
</tr>
<tr>
<td>NT-proBNP</td>
<td>altersabhängig</td>
<td>-</td>
<td>100</td>
<td>Pruszczyk100</td>
</tr>
</tbody>
</table>

Tabelle 4 Cut-off Levels sowie PPV und NPV für die Identifikation einer RVD
3 Prognoseabschätzung

3.1 Herzinsuffizienz

3.1.1 Chronische Herzinsuffizienz

Das Vorliegen einer chronischen Herzinsuffizienz ist mit einem erhöhten Risiko für kardiovaskuläre Komplikationen wie etwa plötzlichem Herztod, malignen Arrhythmien und akutem Pumpversagen vergesellschaftet. Für das Management von Patienten mit chronischer Herzinsuffizienz ist die Kenntnis des individuellen Komplikationsrisiko bzw. der zu erwartenden Prognose von großer Bedeutung. Viele Strategien zur Risikostratifizierung einer chronischen Herzinsuffizienz wurden evaluiert und manche davon, beispielsweise der Heart Failure Survival Score, die LVEF oder das NYHA Stadium, konnten sich im klinischen Routinebetrieb durchsetzen.

In einer großen Zahl an Studien wurde auch die Rolle der natriuretischen Peptide in der Prognoseabschätzung chronischer Herzinsuffizienz evaluiert und einheitlich konnte eine überaus gute
Korrelation mit dem Komplikationsrisiko gefunden werden. Entscheidend ist jedoch die Frage, ob die natriuretischen Peptide auch im direkten Vergleich mit etablierten Prognosemarkern mithalten können und aufgrund dessen im Routinebetrieb Anwendung finden sollten. Im Folgenden wird versucht, Ergebnisse der wichtigsten Studien zu präsentieren und Implikationen auf die klinische Routinarbeit aufzuzeigen.

In den hier beschriebenen Arbeiten wurde eine initiale oder im Verlauf wiederholte (NT-pro)BNP Bestimmung durchgeführt und die Korrelation mit dem Auftreten von kardialen Ereignissen (meist definiert als Tod oder Rehospitalisierung wegen Herzinsuffizienz) untersucht. Die Patienten wurden über einen definierten Zeitraum auf das Eintreten oben genannter Komplikationen beobachtet, wobei nicht immer ersichtlich ist, wie genau das Follow-up in den verschiedenen Studien durchgeführt wurde.

Diesen Ergebnissen entsprechend, konnten auch andere Arbeiten, die eine kontinuierliche BNP Bestimmung zur Risikostratifizierung wählten, einheitlich zeigen, dass ein Anstieg des Serum BNP zu einer deutlichen Risikoerhöhung führt.107-113 So hatte eine BNP Erhöhung um 100 pg/ml eine relative Hazard Ratio von 1,01109 – 1,6108 für das Auftreten von Komplikationen zuz folge. In einem systematischen Review fassten Doust et al. die Ergebnisse einiger dieser Studien zusammen und kamen zu dem Schluss, dass ein Anstieg des BNP um 100 pg/ml das relative Todesrisi-

In einem ambulanten Patientenkollektiv mit einer Auswurffraktion < 35 % verstarb nur 1 % der Patienten mit BNP < 130 pg/ml an plötzlichem Herztod, verglichen mit 19 % in der Gruppe > 130 pg/ml.116

Im Rahmen der COMET-Studie (Cavedilol or Metoprolol European Trial) wurde die prognostische Aussagekraft von NT-proBNP an 3029 Patienten mit NYHA Stadium 2 - 4 unter Betablockertherapie untersucht. Patienten mit einem NT-proBNP über dem Medianwert von 1242 pg/ml verzeichneten ein signifikant höheres Todesrisiko als jene mit Werten < 1242 pg/ml (RR: 2,77). Darüber hinaus war ein Absinken des NT-proBNP unter 400 pg/ml mit einer signifikanten Reduktion des Todesrisiko verbunden (RR: 0,32).119 Die Ergebnisse dieser aktuellen Untersuchung stehen durchaus in Einklang mit älteren Arbeiten, die ebenfalls eine gute Korrelation des NT-proBNP Spiegels mit dem Mortalitätsrisiko beschrieben.120,121

Ein Vergleich von NT-proBNP mit anderen Prognosemarkern wie dem Heart Failure Survival Score, der VO2 oder der linksventrikulären Auswurffraktion konnte NT-proBNP als einzigen unabhängiger Prognosemarker bei Patienten mit fortgeschrittener Herzinsuffizienz identifizieren.120 (siehe Abb. 7)

3.1.2 Akute Herzinsuffizienz

Patienten mit akuter Herzinsuffizienz werden meist primär in einer Notaufnahme vorstellig, um dann in einem Großteil der Fälle stationär aufgenommen zu werden. Da anhand der klinischen Symptomatik eine Abschätzung des Schweregrades der Herzinsuffizienz und der damit verbundenen Prognose nur eingeschränkt möglich ist, wurde die prognostische Aussagekraft von BNP und NT-proBNP im Rahmen der akuten Herzinsuffizienz mehrfach untersucht. Wie bereits erläu-
tert, konnte belegt werden, dass es bei akuter Herzinsuffizienz zu einem signifikanten Anstieg der Serum (NT-pro)BNP Werte kommt und die initiale Bestimmung der natriuretischen Peptide zu einer Erhöhung der diagnostischen Treffsicherheit führt.53, 59

Die groß angelegte randomisierte REDHOT-Study untersuchte an 464 Patienten mit akuter Atemnot die Bedeutung von BNP als Prognoseparameter und Entscheidungshilfe über das Prozedere.125 Bei Aufnahme wurde eine BNP Bestimmung durchgeführt, ein Wert > 100 pg/ml galt als Einschlusskriterium. Bei Verblindung der BNP Ergebnisse dem betreuenden Arzt gegenüber wurden die Patienten über einen Zeitraum von 90 Tagen hinsichtlich des Auftretens von Komplikationen (Tod oder Rehospitalisierung wegen Herzinsuffizienz) beobachtet. Patienten, die innerhalb dieser 90 Tage verstarben, wiesen signifikant höhere BNP Werte als Überlebende auf. Interessanterweise hatte die Entscheidung des Arztes für oder gegen eine stationäre Aufnahme keinen Einfluss auf das Outcome, der initiale BNP Wert konnte jedoch als starker Prognoseparameter identifiziert werden. In der Patientengruppe mit BNP Werten < 200 pg/ml trat ein kombiniertes negatives Ereignis in nur 9% der Fälle ein, während bei Patienten mit BNP > 200 pg/ml in 29% der Fälle Komplikationen auftraten. Die selbe Forschungsgruppe beobachtete in einer kleineren Arbeit, dass ein Abfallen des BNP unter 430 pg/ml eine Rehospitalisierung innerhalb der nächsten 30 Tage unwahrscheinlich macht.126

In einer ähnlichen Arbeit von Harrison et al. erlitten 51% der Patienten mit BNP Werten > 480 pg/ml eine Komplikation, bei BNP Werten < 230 pg/ml hingegen trat nur in 2,5% der Fälle ein negatives Ereignis im Verlauf von 6 Monaten auf.127 In Einklang mit diesen Ergebnissen konnte BNP in einer weiteren Arbeit als wichtigster Prognosemarker identifiziert werden und war anderen Faktoren wie Alter, NYHA Stadium oder pulmonalarteriellem Druck deutlich überlegen.128

Zu NT-proBNP existiert eine an 1256 Patienten durchgeführte Multicenterstudie, die sich unter anderem mit der prognostischen Aussagekraft von NT-proBNP bei Patienten mit akuter Atemnot auseinander setzte. Unter den 720 Patienten mit akuter Herzinsuffizienz war ein NT-proBNP Level > 5180 pg/ml mit einem stark erhöhten Todesrisiko innerhalb der nächsten 76 Tage vergesellschaftet (Odds Ratio: 5,2).52 (siehe Abb. 8)
3.2 Akutes Koronarsyndrom

Im Rahmen des akuten Koronarsyndroms sind BNP und NT-proBNP häufig erhöht und korrelieren gut mit der Größe des Infarktareals.80, 82, 88 Das Wissen über die zu erwartende Prognose ist vor allem bei Patienten mit NSTEMI oder instabiler Angina pectoris in der Entscheidung für oder gegen eine Akut-PCI von entscheidender Bedeutung, da bei diesem Patientengut nicht standardmäßig eine sofortige Herzkatheteruntersuchung durchgeführt wird.

In großen Studienpopulationen wurden verschiedene Parameter und Scores, darunter auch BNP und NT-proBNP zur Risikostratifizierung bei akutem Koronarsyndroms evaluiert.

Arbeiten zur prognostischen Bedeutung der beiden kardialen Marker weisen deutliche Unterschiede hinsichtlich des Zeitpunktes der (NT-pro)BNP Bestimmung und der zeitlichen Dauer des Follow-Up auf. De Lemos et al.129 konnten in einer Subanalyse der OPUS-TIMI 16 Studie (Orbofiban in Patients with Unstable Coronary Syndromes – Thrombolysis In Myocardial Infarction 16)130 die Ergebnisse früherer Arbeiten84, 131, die bereits eine gute Korrelation des BNP mit dem Komplikationsrisiko beschrieben, bestätigen. Bei 2525 Patienten mit akutem Koronarsyndrom wurde BNP 40 Stunden nach Symptombeginn gemessen und das Outcome nach 30 Tagen und 10

Abbildung 9 Kaplan-Meier Kurven der kumulierten Todesinzidenz nach 10 Monaten in Abhängigkeit der BNP Erhöhung 40 Stunden nach Symptombeginn

Für NT-proBNP konnten in einigen sehr groß angelegten Studien ähnliche Ergebnisse gefunden werden. Im Rahmen der GUSTO-IV Studie wurde bei rund 6800 Patienten mit IAP oder NSTE-MI 9,5 Stunden nach Auftreten der Symptome NT-proBNP bestimmt und das Studienkollektiv über einen Zeitraum von 12 Monaten hinsichtlich des Eintretens von Komplikationen beobachtet. Die Ergebnisse entsprechen annähernd jenen der vorhin beschriebenen BNP Studie. Die Mortalitätsrate stieg auch hier in den NT-proBNP Quartilen kontinuierlich an (1,8%, 3,9%, 7,7% und 19,2%; p < 0,001). NT-proBNP war der stärkste unabhängige Prädiktor der 1-Jahres Mortalität und im direkten Vergleich anerkannten Prognoseparametern wie Kreatinin Clearance, Tropo-
nin T oder der Herzfrequenz deutlich überlegen. Zur Vorhersage eines Reinfarktes waren andere Parameter jedoch besser geeignet.

Ein direkter Vergleich der beiden natriuretischen Peptide als Prognoseparameter bei akutem Koronarsyndrom ergab, dass beide Marker annähernd gleich gut zur Abschätzung des Todes- und Herzinsuffizienzrisikos geeignet sind, die Vorhersage eines Reinfarktes aufgrund erhöhter (NT-pro)BNP Werte jedoch nur bei Patienten mit einer LVEF < 40% möglich ist.¹³⁷ Darüber hinaus kam diese Studie zu dem Ergebnis, dass die Kombination von BNP Bestimmung und Beurteilung der LVEF der alleinigen BNP Messung im Rahmen der Risikostratifizierung überlegen ist.

Eine Multimarkerstrategie zur Risikoabschätzung mittels CRP, Troponin I und BNP wurde auch an Kohorten der OPUS-TIMI¹³⁰ sowie der TACTICS-TIMI¹³⁸ Studie evaluiert und es konnte gezeigt werden, dass das relative Todesrisiko mit der Zahl der erhöhten Biomarker linear steigt.¹³⁹ Beträgt des relative Mortalitätsrisiko bei Erhöhung eines Markers 1,8 bzw. 2,1 so lag es bei zwei erhöhten Markern bei 3,5 bzw. 5,7, bei Erhöhung von drei Markern ergab sich ein relatives Risiko von 6 bzw. 13 in den Kohorten der OPUS-TIMI bzw. TACTICS-TIMI Studie.
3.3 Herzklappenerkrankungen

3.3.1 Aortenklappe

Gerber et al. konnten zeigen, dass Patienten mit symptomatischer Aortenklappenstenose signifikant höhere NT-proBNP Werte aufweisen, als jene mit asymptomatischer Aortenstenose.140 Des Weiteren konnte in dieser Arbeit NT-proBNP als stärkster Prädiktor für das Vorhandensein von Symptomen der Aortenstenose ermittelt werden und gezeigt werden, dass die Höhe des (NT-pro)BNP sehr gut mit dem Schweregrad einer Aortenstenose korreliert.

Eine andere Arbeit untersuchte die Korrelation des Serum NT-proBNP mit dem transvalvulären Druckgradienten bei Patienten mit Aortenstenose und kamen zu dem Ergebnis, dass die Höhe des TVPG sehr gut mit den NT-proBNP Werten korreliert.141

Nessmith et al. konnten auch für BNP eine sehr gute Korrelation mit der Symptomausprägung nachweisen142 und kamen darüber hinaus zu dem Ergebnis, dass BNP einen sehr zuverlässiger Prognoseparameter bei konservativ behandelten Patienten mit Aortenstenose darstellt. Die 1-Jahres-Mortalitätsrate lag bei einem BNP < 296 pg/ml bei 6 %, stieg bei BNP Werten von 296 – 819 pg/ml auf 34 % an und lag bei einem BNP > 819 pg/ml sogar über 60%. Keiner der Patienten mit BNP Werten < 100 pg/ml verstarb innerhalb des ersten Jahres.

Auch in einigen anderen Arbeiten konnte die gute Korrelation des (NT-pro)BNP mit dem Schweregrad einer Aortenstenose bestätigt werden, weswegen manche Experten postulierten, dass den natriuretischen Peptide eventuell in der Entscheidung über den optimalen Operationstermin eine wichtige Rolle zukommen könnte.141,143
Die Gruppe um Bergler-Klein untersuchte den Stellenwert der natriuretischen Peptide bei Patienten mit schwerer Aortenstenose und kam zu dem Ergebnis, dass NT-proBNP ein unabhängiger Prädiktor der symptomfreien Überlebenszeit und des postoperativen Outcomes ist.144 Diese Daten stützen ebenfalls die Hypothese, dass (NT-pro)BNP bei der Festlegung des optimalen Operationszeitpunktes eine Rolle spielen könnten.

3.3.2 Mitralklappe

Mehrere Studien über natriuretische Peptide im Rahmen von Erkrankungen der Mitralklappe konnten zeigen, dass es sowohl bei der Mitralklappensuffizienz als auch bei der Mitralklappenstenose zu einer Erhöhung der (NT-pro)BNP Werte kommt.

An 49 Patienten mit Mitralklappensuffizienz untersuchten Sutton et al. den Zusammenhang zwischen Symptomen bzw. Schweregrad der MINS und der Höhe des (NT-pro)BNP.146 Die (NT-pro)BNP Werte korrelierten gut mit dem Schweregrad der Mitralklappensuffizienz, Patienten mit symptomatischer Mitralklappensuffizienz wiesen signifikant höhere (NT-pro)BNP Werte auf als asymptomatiche Patienten. Weiters konnte gezeigt werden, dass sich BNP bei konservativ behandelten Patienten mit MINS gut zur Prognoseabschätzung eignet. So war ein BNP > 31 pg/ml mit einem deutlich höheren Todesrisiko assoziiert als ein BNP unter diesem Schwellenwert.147 Eine kürzlich veröffentlichte Arbeit an 207 Patienten mit chronischer MINS konnte für NT-proBNP ähnliche Ergebnisse finden. In einem medianen Beobachtungszeitraum von 29 Monaten konnte NT-proBNP als stärkster Prädiktor für Herztod oder Hospitalisierung identifiziert werden.148
3.4 Pulmonalarterienembolie

Wie bereits erwähnt, gilt das Vorliegen einer RVD im Rahmen der akuten PAE als prognostisch ungünstiger Faktor und erhöht das Mortalitätsrisiko deutlich.94

Die meisten Arbeiten zur prognostischen Wertigkeit von (NT-pro)BNP bei akuter PAE untersuchten primär die Korrelation zwischen erhöhten BNP Werten und dem Auftreten von intrahospitalen Komplikationen während des Verlaufes.56, 98, 104, 149, 150 Als primäre Endpunkte wurden größtenteils schwerwiegende Komplikationen (meist bezeichnet als MACE oder SAE) wie Notwendigkeit einer CPR, maschinelle Beatmung, Katecholamin- bzw. Thrombolysepflicht oder Tod gewählt.

In den Studien zu BNP lag die Komplikationsprävalenz zwischen 18% und 27%, während die Mortalitätsrate 6% bis 17% betrug. Mehrheitlich konnten bei jenen Patienten mit kompliziertem Verlauf signifikant höhere mediane BNP-Werte gefunden werden, als bei Patienten mit normalem, komplikationslosem Verlauf (194 – 950 pg/ml vs. 39 – 296 pg/ml56, 98, 101, 104 bzw. 2,45 pmol/l vs. 0,8 pmol/l151). Allein Krüger et al. konnten hinsichtlich dieser Fragestellung keinen signifikanten Unterschied finden55 und beschrieben auch 3 Fälle eines komplizierten Verlaufs bei normalen BNP-Werten. Dies könnte eventuell auf die kurze Zeitspanne zwischen Auftreten der Symptome und Zeitpunkt der Blutabnahme zurück zu führen sein. Da BNP nur in sehr geringen Mengen in sekretorischen Granula gespeichert wird, ist die Höhe des zirkulierenden BNP abhängig von der Neuproduktion und –sekretion, sodass eine Erhöhung der Serumwerte oftmals erst eine Stunde nach Symptombeginn gemessen werden kann.14

Für NT-proBNP konnten bei Patienten mit kompliziertem Verlauf ebenfalls signifikant höhere Werte gefunden werden als bei jenen mit gutartigem Verlauf.56, 100 (siehe Abb. 10)
Hinsichtlich der Vorhersagekraft für oben angeführte Komplikationen weist BNP je nach verwendetem Cut-off Level positiv prädiktive Werte von maximal 57% auf98, die negativ prädiktiven Werte lagen jedoch einheitlich bei annähernd 100\%98,104,149 Daraus lässt sich schließen, dass die Vorhersage eines schlechten Outcomes aufgrund erhöhter BNP Werte eher gewagt ist, sich das Patientenkollektiv mit dem geringsten Komplikationsrisiko mittels BNP Bestimmung jedoch gut identifizieren lässt.

In den Studien zur prognostische Wertigkeit von NT-proBNP konnten bei normalen bis leicht erhöhten NT-proBNP Werten ebenfalls negativ prädiktive Werte von mindestens 95\% für das Auftreten von intrahospitalen Komplikationen gefunden werden56,100,152 Die positiv prädiktiven Werte waren ähnlich niedrig wie für BNP. Tabelle 5 fasst die Cut-off Levels, sowie negativ und positiv prädiktive Werte für verschiedene Assays nochmals zusammen.
<table>
<thead>
<tr>
<th>Biomarker</th>
<th>Cutoff-Level</th>
<th>PPV %</th>
<th>NPV %</th>
<th>Assay</th>
<th>Autor</th>
</tr>
</thead>
<tbody>
<tr>
<td>BNP</td>
<td>50 pg/ml</td>
<td>12</td>
<td>100</td>
<td>-</td>
<td>Kucher<sup>98</sup></td>
</tr>
<tr>
<td>BNP</td>
<td>50 pg/ml</td>
<td>35</td>
<td>100</td>
<td>Biosite</td>
<td>Ray<sup>104</sup></td>
</tr>
<tr>
<td>BNP</td>
<td>21,7 mmol/l</td>
<td>17</td>
<td>99</td>
<td>-</td>
<td>ten Wolde<sup>149</sup></td>
</tr>
<tr>
<td>NT-</td>
<td>1000 pg/ml</td>
<td>25</td>
<td>95</td>
<td>Roche</td>
<td>Binder<sup>152</sup></td>
</tr>
<tr>
<td>NT-</td>
<td>500 pg/ml</td>
<td>12</td>
<td>100</td>
<td>Roche</td>
<td>Kucher<sup>56</sup></td>
</tr>
<tr>
<td>NT-</td>
<td>altersabhängig</td>
<td>-</td>
<td>100</td>
<td>-</td>
<td>Pruszczyk<sup>100</sup></td>
</tr>
</tbody>
</table>

Tabelle 5 Vergleich der Cutoff-Levels sowie der positiv und negativ prädiktiven Werte für verschiedene Assays
4 Therapiemonitoring

4.1 Herzinsuffizienz

Die Behandlung der Herzinsuffizienz hat sich in den letzten Jahrzehnten stark verändert und an Komplexität deutlich zugenommen. Bis in die 1980er Jahre bestand die Herzinsuffizienztherapie hauptsächlich aus der Gabe von Schleifendiuretika, Digitalis und einer diätetischer Natriumrestriktion. Durch die Einführung der ACE – Hemmer153 in die Therapie der HI und neuere Studienergebnisse, die sowohl Betablockern154 als auch Aldosteronantagonisten155 positive Effekte in der Behandlung der Herzinsuffizienz zusprachen, wurde die medikamentöse Therapie der Herzschwäche zunehmend komplexer und erfordert eine genauere Überwachung der Patienten.

In vielen Studien konnte gezeigt werden, dass eine medikamentöse Therapie mit ACE – Hemmern, Angiotensionrezeptorblockern, Aldosteronantagonisten oder Betablockern neben einer Verbesserung der klinischen Symptomatik zu einer signifikanten Reduktion der (NT-pro)BNP Spiegel führt156-159.

Murdoch et al. untersuchten eine Population von 20 Patienten mit chronischer Herzinsuffizienz, die entweder anhand der BNP Werte oder empirisch mit der „optimalen“ ACE - Hemmer Dosis behandelt wurden160. Nach vierwöchiger Therapie konnte nur in der BNP Gruppe eine signifi-
kante Reduktion der Plasma BNP Spiegel gefunden werden. Darüber hinaus wiesen die Patienten der BNP Gruppe eine Reduktion der mittleren Herzfrequenz und eine Zunahme der Plasma Rennaktivität auf, die Therapie wurde in beiden Gruppen sehr gut vertragen.

In einer kanadischen Studie wurde die BNP gesteuerte Dosisanpassung des Betablockers Bisoprolol mit einer klinisch gesteuerten Bisoprololtherapie verglichen. Bei 49 Patienten mit Herz-
insuffizienz wurde zum Studieneinschluss eine Betablockertherapie begonnen und im Verlauf eine stetige Dosissteigerung durchgeführt. Nach einem Beobachtungszeitraum von 3 Monaten war kein statistisch signifikanter Unterschied hinsichtlich der Betablockerdosis in den beiden Gruppen zu beobachten. Die LVEF konnte in beiden Gruppen verbessert werden.163

Eine Prognosestudie an 297 Patienten kam zu dem Ergebnis, dass NT-proBNP ein zuverlässiger Todes- und Herzinsuffizienzprädiktor bei Patienten mit ischämischer linksventrikulärer Dysfunktion ist. Weiters postulierten die Autoren dieser Arbeit, dass die natriuretischen Peptide in Zukunft vielleicht helfen könnten, jene Patienten zu identifizieren, die von einer Therapie mit Betablockern am stärksten profitieren. So konnte durch die Therapie mit Carvedilol bei Patienten mit einem NT-proBNP über dem Medianwert das Mortalitätsrisiko reduziert werden, während bei Patienten mit initialen NT-proBNP Werten unter dem Medianwert das Mortalitätsrisiko durch die Betablockergabe nicht verringert werden konnte.121

Fruhwald et al. konnten zeigen, dass bei Patienten mit Herzinsuffizienz und kardialer Asynchronie der NT-proBNP Level durch eine kardiale Resynchronisationstherapie deutlich reduziert wird und deswegen eventuell als einfacher Marker zur Erfolgskontrolle einer kardialen Resynchronisationstherapie verwendet werden könnte.164
5 Zusammenfassung und Konklusion

5.1 Herzinsuffizienz

5.1.1 Akute Herzinsuffizienz

Des Weiteren ist mittels (NT-pro)BNP Bestimmung eine sehr zuverlässige Abschätzung des individuellen Komplikationsrisikos im Rahmen akuter Herzinsuffizienz möglich. Patienten mit initial geringen (NT-pro)BNP Werte weisen ein sehr geringes Risiko auf, ab einem BNP > 400 pg/ml bzw. NT-proBNP > 5000 pg/ml steigt das Todes- und Rehospitalisierungsrisiko jedoch stark an.

Die Bestimmung von BNP oder NT-proBNP kann im Rahmen der akuten Herzinsuffizienz auf jeden Fall empfohlen werden und sollte zumindest bei Patienten mit unklarer Atemnot durchgeführt werden.
5.1.2 **Chronische Herzinsuffizienz**

In der Abschätzung des Komplikationsrisikos bei chronischer Herzinsuffizienz kommt sowohl dem initialen (NT-pro)BNP Wert als auch dem Werteverlauf eine große Bedeutung zu. Patienten mit im Verlauf ansteigenden (NT-pro)BNP Werten weisen eine erheblich schlechtere Prognose auf als jene mit konstanten Serumwerten für BNP oder NT-proBNP. Darüber hinaus stellt der initiale (NT-pro)BNP Wert einen unabhängigen Prädiktor für das Auftreten von Komplikationen dar, und ist anderen etablierten Prognoseparametern deutlich überlegen.

Die (NT-pro)BNP gesteuerte Therapie scheint das Mortalitätsrisiko zu verringern und einer nach klinischen Gesichtspunkten geleiteten Therapie überlegen zu sein. Eventuell lassen sich anhand der initialen BNP Werte auch jene Patienten identifizieren, die von einer Betablockertherapie am stärksten profitieren. Um diese und ähnliche Fragen jedoch endgültig zu klären, müssen in Zukunft weitere Arbeiten mit spezifischeren Fragestellungen durchgeführt werden.

Peter Michael Zechner
5.2 Akutes Koronarsyndrom

5.3 Herzklappenerkrankungen

Bei Erkrankungen der Herzklappen spielen die natriuretischen Peptide hauptsächlich im Rahmen der Mitralsuffizienz und der Aortenstenose eine entscheidende Rolle. Zum einen korreliert der (NT-pro)BNP Level gut mit dem Schweregrad des Klappenvitiums und der Symptomausprägung, zum anderen gelten BNP und NT-proBNP als Prognosefaktoren bei Herzklappenerkrankungen.
5.4 Akute Pulmonalarterienembolie

Den aktuellen Studiendaten zufolge sind sowohl BNP als auch NT-proBNP bei Vorliegen einer rechtsventrikulären Dysfunktion deutlich erhöht und scheinen aufgrund der hohen negativ prädiktiven Werte zum Ausschluss einer rechtsventrikulären Dysfunktion sehr gut geeignet zu sein. Zur Identifikation einer Rechtsherzinsuffizienz hingegen sind die beiden Biomarker bei positiv prädiktiven Werten von durchschnittlich 70% weniger gut geeignet und der Echokardiographie deutlich unterlegen.

Demgegenüber weisen sowohl BNP als auch NT-proBNP negativ prädiktive Werte von nahezu 100% für das Auftreten intrahospitaler Komplikationen auf. Aufgrund dieser Daten erscheint es mittels frühzeitiger (NT-pro)BNP-Bestimmung möglich, jene Patienten zu identifizieren, die ein verschwindend kleines Komplikationsrisiko aufweisen und deshalb für eine Therapie auf Normalstation oder im ambulanten Bereich in Frage kommen. Cut-off Werte von $< 50 – 100 \text{ pg/ml}$ für BNP bzw. $< 300 – 500 \text{ pg/ml}$ für NT-proBNP dürften hierfür am besten geeignet sein.
6 Lebenslauf

Persönliche Daten

Geburtsdatum: 15.07.1984
Staatsbürgerschaft: Österreich
Adresse: Naglergasse 17, 8010 Graz, Österreich
E-mail: pm.zechner@gmail.com

Schullaufbahn

1994 – 2002 Bundesgymnasium Fürstenfeld, Abschluss mit ausgezeichnetem Erfolg
1990 – 1994 Volksschule Großwilfersdorf

Studium

10/2003 – 06/2009 Studium der Humanmedizin an der Medizinischen Universität Graz
07/2004 Abschluss des 1. Studienabschnittes
09/2008 Abschluss des 2. Studienabschnittes

Famulaturen

Kardiologie Universitätsklinikum La Laguna, Spanien (2 Wochen – 2008)
Anästhesie Universitätsklinikum La Laguna, Spanien (3 Wochen – 2008)
Kinderanästhesie Universitätsklinikum Graz (3 Wochen – 2006)
Innere Medizin Landeskrankenhaus Feldbach (4 Wochen – 2006)
Anästhesie Landeskrankenhaus Feldbach (3 Wochen – 2006)
Innere Medizin
Landeskrankenhaus Feldbach (3 Wochen – 2005)

Anästhesie
Universitätsklinikum Graz (3 Wochen – 2005)

Allgemeinchirurgie
Landeskrankenhaus Fürstenfeld (2 Wochen – 2005)

Allgemeinchirurgie
Landeskrankenhaus Fürstenfeld (4 Wochen – 2004)

Zusatzausbildungen und -tätigkeiten

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Aktivität</th>
</tr>
</thead>
<tbody>
<tr>
<td>2003 – heute</td>
<td>Ehrenamtliche Arbeit als Sanitäter und NKI-Rettungsmediziner beim Österreichischen Roten Kreuz</td>
</tr>
<tr>
<td>2009</td>
<td>Studienassistent an der Universitätsklinik für Anästhesiologie und Intensivmedizin (Meduni Graz)</td>
</tr>
<tr>
<td>2009</td>
<td>Referent beim Notarztrefresherkurs der Steirischen Ärztekammer</td>
</tr>
<tr>
<td>2009</td>
<td>Abdomensonographie Grundkurs (ÖGUM - Graz)</td>
</tr>
<tr>
<td>2009</td>
<td>Kurs über Lungensonographie in der Notfall- und Intensivmedizin (Ceurf - Paris)</td>
</tr>
<tr>
<td>2009</td>
<td>Workshop „Medical Writing“ (Meduni Graz)</td>
</tr>
<tr>
<td>2008</td>
<td>Hypertonie Seminar (Meduni Graz)</td>
</tr>
<tr>
<td>2007</td>
<td>Echokardiographiekurs mit praktischen Übungen (Meduni Graz)</td>
</tr>
<tr>
<td>2007</td>
<td>Prüfung zum Notfallsanitäter mit Kompetenz zur Intubation u. Beatmung - Rettungsmediziner (Rotes Kreuz, Meduni Graz)</td>
</tr>
<tr>
<td>2006</td>
<td>Notfallseminar (Medizinercorps Graz)</td>
</tr>
<tr>
<td>2004 – 2006</td>
<td>Fallbeispiele Notfallmedizin (Meduni Graz)</td>
</tr>
<tr>
<td>2005/2006</td>
<td>ACLS, ATLS und Pediatric Life Support Kurse (Medizinercorps Graz)</td>
</tr>
<tr>
<td>2005/2006</td>
<td>Abdomensonographiekurs mit Übungen am Patienten (Meduni Graz)</td>
</tr>
</tbody>
</table>

Peter Michael Zechner
2005 EKG-Seminar (Meduni Graz)
2004 Intubationskurs (Meduni Graz)
2002 Rettungssanitäterausbildung (Rotes Kreuz)

Auslandsaufenthalte

10/2008 „Emergency Medicine Ultrasound“ Rotation an der University of California/Irvine im Rahmen des Praktischen Studienjahres
02-07/2008 Auslandssemester an der Universität von La Laguna/Spanien

Wissenschaftliche Erfahrung

2006/2007 Mitarbeit an einer Studie über NT-proBNP bei Patienten mit akuter kardialer Dekompensation und Niereninsuffizienz (LKH Feldbach)

Wildner, G; Gemes, G; Zechner, P; Prause, G: Notfallmedizinische Ausbildung im neuen Grazer Studienplan Humanmedizin. 4. Treffen der wissenschaftlichen Arbeitsgruppen der Deutschen Gesellschaft für Anästhesiologie und Intensivmedizin im Bereich Notfallmedizin; FEB 11-12, 2008; Kiel, GERMANY. 2008. [Oral Communication]

Wildner, G; Gemes, G; Zechner, P; Prause, G: Notfallmedizinische Ausbildung im Neuen Studienplan an der Medizinischen Universität Graz. A+IC News - Kongressband. Proceedings der eingeladenen Vorträge und eingesandten Abstracts. 2007; 57(S2):22-22.- Austrian International
Auszeichnungen

2004 Zuerkennung eines Leistungsstipendiums der Meduni Graz
2002 Zuerkennung des Friedrich Gottlieb Klopstock Preises für besondere Leistungen im Bereich der darstellenden Kunst

Sonstiges

Fremdsprachen: Englisch (fließend in Wort und Schrift), Spanisch, Französisch
EDV-Kenntnisse: Microsoft Office, Endnote, Macintosh und Microsoft Betriebssysteme
7 Literaturliste

33. Bayes-Genis A, DeFilippi C, Januzzi JL, Jr. Understanding amino-terminal pro-B-type

43. Chenevier-Gobeaux C, Claessens Y-E, Voyer S, Desmoulins D, Ekindjian OGJ-C. Influence of renal function on N-terminal pro-brain natriuretic peptide (NT-proBNP) in

47. Groenning BA, Raymond I, Hildebrandt PR, Nilsson JC, Baumann M, Pedersen F. Diagnostic and prognostic evaluation of left ventricular systolic heart failure by plasma N-terminal pro-brain natriuretic peptide concentrations in a large sample of the general population. *Heart.* 2004;90(3):297-303.

52. Januzzi JL, van Kimmenade R, Lainchbury J, Bayes-Genis A, Ordonez-Llanos J, Santalolo-Bel M, Pinto YM, Richards M. NT-proBNP testing for diagnosis and short-term...

73. Hobbs FDR, Davis RC, Roalfe AK, Hare R, Davies MK. Reliability of N-terminal proBNP assay in diagnosis of left ventricular systolic dysfunction within representative and high risk populations. Heart. 2004;90(8):866-870.

85. Talwar S, Squire IB, Downie PF, McCullough AM, Campton MC, Davies JE, Barnett DB, Ng LL. Profile of plasma N-terminal proBNP following acute myocardial infarction; correlation with left ventricular systolic dysfunction.[see comment]. *European Heart Journal*. 2000;21(18):1514-1521.

101. Pieralli F, Olivotto I, Vanni S, Conti A, Camaiti A, Targioni G, Grifoni S, Berni G. Usefulness of bedside testing for brain natriuretic peptide to identify right ventricular

Peter Michael Zechner

Binder L, Pieske B, Olschewski M, Geibel A, Klostermann B, Reiner C, Konstantinides S. N-terminal pro-brain natriuretic peptide or troponin testing followed by

