Dissertation

Continuous **Focal** Drug Delivery to Assess the Pharmacological Role of **Liraglutide** on Energy Homeostasis in the **Hypothalamus**

submitted by

MSc, BSc

Katrin Kaineder

for the Academic Degree of

Doctor of Philosophy

(PhD)

at the

Medical University of Graz

Department of Internal Medicine
Division of Endocrinology and Diabetology

under the Supervision of

Univ.-Prof. Dr. med. univ. Thomas R. Pieber

2017
Statutory Declaration

I hereby declare that this dissertation is my own original work and that I have fully acknowledged by name all of those individuals and organisations that have contributed to the research for this dissertation. Due acknowledgement has been made in the text to all other material used. Throughout this dissertation and in all related publications I followed the guidelines of “Good Scientific Practice and Ombuds Committee at the Medical University of Graz”.

Parts of this thesis are adapted from the publication Kaineder et al. “Continuous intrahypothalamic rather than subcutaneous liraglutide administration leads to reduced body weight gain and stimulation of melanocortin system”, published 2017 in the *International Journal of Obesity*.

Date:
Acknowledgements

The accomplishment of my PhD-thesis would not have been possible without the encouragement and support of many amazing people, whom I had the honor to meet during these four years.

First I want to honestly thank my supervisor, without whom this thesis could not have been done. Thank you, Thomas Pieber for your constructive criticism and your undoubted support in every situation.

Special thanks goes to my awesome Upper Austrian friends Thomas and Selma, for their great help during the development of my PhD project, and for giving me amazing advice and suggestions for all my scientific publications. With their convincing words they kept me going during doubtful situations.

Of course, I want to thank my labmates. Together we are the basic research unit (BRUT) at the Divison for Endocrinology and Diabetology. We started as a very small group, Alexandra, Mina, Barbara and me and ended in a group of eight people, Petra, Julia, Jasmin, Ceren, Lukas, Kaddour, and Rokhsareh, who rule the lab no matter what. Special thanks to Petra for motivation and encouragement during the last tough year. I want thank Julia and Kaddour, who helped me a lot with experiments and analysis. To my dearest office partners, Ceren and Mina, thank you for your patience, cheering words and our coffee breaks, which I already miss. You are all amazing people, and I am grateful that I had the chance to meet every single one of you.

I am very thankful to my parents, Karin and Fritz, my grandpa Karl and my uncle Karl-Heinz, who actually convinced me to do a PhD. Without these amazing and great people I would not have gotten so far in my career. I love you.

My last thank is directed to Matthias, who supported me with his great serenity and comfort in critical situations. Thank you for the laughs and fun we shared.

Special thanks to everybody from the DK-MOLIN for making this PhD thesis possible. I am very thankful for all the new amazing people I got to know from all over the world because of the DK.
I also want to thank Signe Sørensen Torekov, Jens Holst, and Bolette Hartmann for giving me the chance to stay at their lab to discuss the study design and hypothesis of my project. I thank all the members of Signe’s and Jens lab for the warm welcome in Copenhagen and for the fun we shared on conferences. Special thanks to Eva, I had a wonderful time with you, and I am very thankful that you allowed me to get an insight in clinical studies.

This study has been funded by the Medical University of Graz through the PhD Program Molecular Fundamentals of Inflammation (DK-MOLIN) via the Austrian Science Fund (FWF, project number W1241).
Table of Contents

Statutory Declaration ... 2
Acknowledgements .. 3
Table of Contents .. 5
Abbreviations and Definitions ... 9
Zusammenfassung .. 12
Abstract .. 14

GENERAL INTRODUCTION ... 16

1 Epidemiology of obesity ... 16
 1.1 Energy homeostasis ... 17
 1.2 Energy homeostasis regulated in the hypothalamus .. 18

2 Liraglutide as an anti-obesity drug .. 21
 2.1 Pharmacokinetics of liraglutide (Adsorption, Distribution, Metabolism, Toxicity –
 ADMET) ... 21
 2.2 Liraglutide and energy homeostasis .. 22

Aim of the study ... 25

CHAPTER 1 ... 26

3 Establishment of a focal drug delivery system to the hypothalamus 27
 3.1 Abstract ... 27
 3.2 Aim ... 28
 3.3 Introduction .. 29
 3.4 Research design and methods .. 31
 3.4.1 Animal Models ... 31
 3.4.2 Study design .. 31
 3.4.3 Surgical implantation of three different brain cannulae into the hypothalamus 32
 3.4.4 Stereotactic coordinates .. 33
3.4.5 Evaluating the effect of three different implantation materials on body weight.. 33
3.4.6 Immunohistochemical analysis of reactive astrogliosis, microglial activation, and thymocyte infiltration.. 33
3.4.7 Histological and spectrophotometrical verification of correct substance delivery and placement of the brain cannula .. 34
3.5 Results .. 35
3.5.1 Body weight development was unaffected for 14-days PEEK cannula implantation.. 35
3.5.2 Glial scar formation and thymocyte infiltration after 14-days implantation of PEEK cannula are mild... 35
3.5.3 Verification of cannula placement and successful substance delivery to the hypothalamus .. 39
3.6 Discussion .. 40

CHAPTER 2 ... 42
4 The chronic effect of continuous liraglutide treatment on energy homeostasis . 43
4.1 Abstract .. 43
4.2 Aim ... 44
4.3 Introduction .. 45
Research design and methods .. 47
4.3.1 Animal models ... 47
4.3.2 Study Design .. 47
4.3.3 Surgical implantation of osmotic pumps ... 48
4.3.4 Surgical implantation of intrahypothalamic cannula 50
4.3.5 Assessment of body weight, adipose tissue mass and size 50
4.3.6 Assessment of abdominal visceral and subcutaneous fat composition. 51
4.3.7 RNA isolation, cDNA transcription and RT-qPCR 51
4.3.8 Examination of metabolic and hormonal parameters 51
4.3.9 Statistical Analysis ... 52
4.4 Results ... 53
 4.4.1 Chronic intrahypothalamic liraglutide treatment leads to profound weight loss and adipose tissue loss ... 53
 4.4.2 Chronic subcutaneous liraglutide treatment does not affect body weight and adipose tissue mass ... 54
 4.4.3 Chronic intrahypothalamic rather than subcutaneous liraglutide treatment leads to body weight loss and adipose tissue loss ... 55
 4.4.4 Chronic intrahypothalamic liraglutide treatment reduces the size of brown adipocytes ... 56
 4.4.5 Chronic intrahypothalamic liraglutide treatment reduces gain of visceral adipose tissue volume ... 57
 4.4.6 Chronic subcutaneous liraglutide treatment does not affect adipose tissue volume ... 58
 4.4.7 The chronic intrahypothalamic liraglutide-induced body weight and adipose tissue mass loss is independent of thermogenesis and browning.......................... 59
 4.4.8 Chronic intrahypothalamic liraglutide treatment stimulates the central melanocortin (MC4R) system ... 66
 4.4.9 Chronic intrahypothalamic liraglutide treatment increases thyroxine levels ... 67

5 Discussion ... 69

CHAPTER 3 ... 73

6 The pharmacological effect of acute liraglutide treatment on energy homeostasis ... 74
 6.1 Abstract ... 74
 6.2 Aim ... 74
 6.3 Introduction ... 74
 6.4 Research design and methods .. 76
 6.4.1 Animal models ... 76
 6.4.2 Study design .. 76
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4.3</td>
<td>Surgical implantation of intrahypothalamic cannula</td>
<td>76</td>
</tr>
<tr>
<td>6.4.4</td>
<td>Assessment of body weight and adipose tissue mass</td>
<td>77</td>
</tr>
<tr>
<td>6.4.5</td>
<td>RNA isolation, cDNA transcription and RT-qPCR</td>
<td>77</td>
</tr>
<tr>
<td>6.4.6</td>
<td>Examination of metabolic and hormonal parameters</td>
<td>78</td>
</tr>
<tr>
<td>6.4.7</td>
<td>Statistical Analysis</td>
<td>78</td>
</tr>
<tr>
<td>6.5</td>
<td>Results</td>
<td>79</td>
</tr>
<tr>
<td>6.5.1</td>
<td>Acute intrahypothalamic liraglutide treatment does not affect body</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>weight</td>
<td></td>
</tr>
<tr>
<td>6.5.2</td>
<td>Acute liraglutide treatment does not reduce adipose tissue mass</td>
<td>80</td>
</tr>
<tr>
<td>6.5.3</td>
<td>Acute intrahypothalamic liraglutide treatment does not affect</td>
<td>81</td>
</tr>
<tr>
<td></td>
<td>expression of markers for thermogenesis and adipose tissue morphology</td>
<td></td>
</tr>
<tr>
<td>6.5.4</td>
<td>Acute intrahypothalamic liraglutide treatment does not affect the</td>
<td>84</td>
</tr>
<tr>
<td></td>
<td>regulation of hypothalamic appetite neurons</td>
<td></td>
</tr>
<tr>
<td>6.5.5</td>
<td>Acute intrahypothalamic liraglutide treatment does not affect glucose</td>
<td>85</td>
</tr>
<tr>
<td></td>
<td>and fatty acid metabolite levels</td>
<td></td>
</tr>
<tr>
<td>6.6</td>
<td>Discussion</td>
<td>86</td>
</tr>
<tr>
<td>7</td>
<td>Conclusion</td>
<td>87</td>
</tr>
<tr>
<td>8</td>
<td>Future perspective</td>
<td>88</td>
</tr>
<tr>
<td></td>
<td>Bibliography</td>
<td>89</td>
</tr>
<tr>
<td>9</td>
<td>Appendix</td>
<td>103</td>
</tr>
<tr>
<td>9.1</td>
<td>SYBR and TaqMan primer sequences used for RT-PCR analysis</td>
<td>103</td>
</tr>
<tr>
<td>9.2</td>
<td>Total liraglutide concentrations in plasma</td>
<td>105</td>
</tr>
</tbody>
</table>
Abbreviations and Definitions

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>3V</td>
<td>Third ventricle</td>
</tr>
<tr>
<td>ACSF</td>
<td>Artificial cerebrospinal fluid</td>
</tr>
<tr>
<td>ADRβ1</td>
<td>Adrenergic receptor β1</td>
</tr>
<tr>
<td>AGRP</td>
<td>Agouti related protein</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP-activated protein kinase</td>
</tr>
<tr>
<td>α-MSH</td>
<td>α-melanocyte stimulating hormone</td>
</tr>
<tr>
<td>AP</td>
<td>Anterior - Posterior</td>
</tr>
<tr>
<td>ARC</td>
<td>Arcuate nucleus</td>
</tr>
<tr>
<td>AT</td>
<td>Adipose tissue</td>
</tr>
<tr>
<td>BBB</td>
<td>Blood brain barrier</td>
</tr>
<tr>
<td>BDNF</td>
<td>Brain derived neurotrophic factor</td>
</tr>
<tr>
<td>BMI</td>
<td>Body mass index</td>
</tr>
<tr>
<td>BMP7</td>
<td>Bone morphogenetic protein 7</td>
</tr>
<tr>
<td>CART</td>
<td>Cocaine and amphetamine regulated transcript</td>
</tr>
<tr>
<td>CCK</td>
<td>Cholecystokinin</td>
</tr>
<tr>
<td>CDNA</td>
<td>Complementary Deoxyribonucleic acid</td>
</tr>
<tr>
<td>CIDEA</td>
<td>Cell death-inducing DFFA-like effector a</td>
</tr>
<tr>
<td>COFM</td>
<td>Cerebral open flow microperfusion</td>
</tr>
<tr>
<td>CRH</td>
<td>Corticotropin-releasing hormone</td>
</tr>
<tr>
<td>CVO</td>
<td>Circumventricular organs</td>
</tr>
<tr>
<td>DIO2</td>
<td>Type II iodothyronine deiodinase</td>
</tr>
<tr>
<td>DMN</td>
<td>Dorsomedial nucleus</td>
</tr>
<tr>
<td>DPPIV</td>
<td>Dipeptidyl peptidase IV</td>
</tr>
<tr>
<td>DV</td>
<td>Dorsal-Ventral</td>
</tr>
<tr>
<td>EMA</td>
<td>European Medicines Agency</td>
</tr>
<tr>
<td>EWAT</td>
<td>Epididymal brown adipose tissue</td>
</tr>
<tr>
<td>FDA</td>
<td>Food and Drug Administration</td>
</tr>
<tr>
<td>FFM</td>
<td>Free fat mass</td>
</tr>
<tr>
<td>FG</td>
<td>Free glycerol</td>
</tr>
<tr>
<td>FGF21</td>
<td>Fibroblast growth factor 21</td>
</tr>
<tr>
<td>GABA</td>
<td>Gamma aminobutyric acid</td>
</tr>
<tr>
<td>GFAP</td>
<td>Glial fibrillary acidic protein</td>
</tr>
</tbody>
</table>
GLP-1 Glucagon-like peptide
GLP-1R Glucagon-like peptide 1 receptor
H&E Haematoxylin & eosin
I.D. Inner diameter
IBAT Interscapular brown adipose tissue
ICV Intracerebroventricular
IH Intrahypothalamic
IWAT Inguinal white adipose tissue
LHA Lateral hypothalamus
MC3R Melanocortin 3 receptor
MC4R Melanocortin 4 receptor
MCH Melanin-concentrating hormone
ME Median eminence
Micro-CT Micro-computer tomography
ML Midline
MTII Melanotan II
NAC Nucleus accumbens
NaCl Sodium chloride
NaF Sodium fluorescein
NEFA Non-esterified fatty acid
NEP Neprilysin
NPY Neuropeptide Y
O.D. Outer diameter
OCT Optimal cutting temperature
PBS Phosphate buffered saline
PEEK Polyether ether ketone
PFA Paraether etherdehyde
PLH Posterior lateral hypothalamus
POMC Proopiomelanocortin
PPARGC1a Peroxisome proliferator-activated receptor gamma coactivator 1-alpha
PRDM16 PR containing domain 16
PVN Paraventricular nucleus
PYY Polypeptide Y
qPCR Quantitative Polymerase chain reaction
REE Resting energy expenditure
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>RNA</td>
<td>Ribonucleic acid</td>
</tr>
<tr>
<td>S.D.</td>
<td>Sprague Dawley</td>
</tr>
<tr>
<td>SAT</td>
<td>Subcutaneous adipose tissue</td>
</tr>
<tr>
<td>SC</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>SF1</td>
<td>Steroidogenic factor 1</td>
</tr>
<tr>
<td>T2D</td>
<td>Type 2 diabetes</td>
</tr>
<tr>
<td>T3</td>
<td>Triiodothyronine</td>
</tr>
<tr>
<td>T4</td>
<td>Thyroxine</td>
</tr>
<tr>
<td>TAG</td>
<td>Triglycerides</td>
</tr>
<tr>
<td>TNFRSF9</td>
<td>Tumor necrosis factor receptor superfamily, member 9</td>
</tr>
<tr>
<td>TRH</td>
<td>Thyrotropin-releasing hormone</td>
</tr>
<tr>
<td>TRKB</td>
<td>Tropomyosin receptor kinase B</td>
</tr>
<tr>
<td>TSH</td>
<td>Thyroid stimulating hormone</td>
</tr>
<tr>
<td>UCP1</td>
<td>Uncoupling protein 1</td>
</tr>
<tr>
<td>VAT</td>
<td>Visceral adipose tissue</td>
</tr>
<tr>
<td>VMN</td>
<td>Ventromedial nucleus</td>
</tr>
<tr>
<td>VTA</td>
<td>Ventral tegmental area</td>
</tr>
<tr>
<td>ZIC1</td>
<td>Zinc finger of the cerebellum 1</td>
</tr>
</tbody>
</table>
Zusammenfassung

In dieser Studie wollen wir den Unterschied zwischen peripher (subkutanem - SC) und zentral (intrahypothalamisch - IH) injiziertem Liraglutid auf den Körpergewichtsverlauf in chronischer und akuter Behandlung zu erforschen. Wir untersuchten, ob dem Gewichtsverlust ein erhöhter Energieverbrauch im Fettgewebe oder eine Stimulierung hypothalamischer Appetit-Zentren zugrunde liegt.

Die chronische IH Liraglutid Verabreichung induzierte eine 8%ige Körpergewichtsreduktion am Tag 9 im Vergleich zur entsprechenden Kontrollgruppe.
(P<0,01) und einen Körpergewichtsverlust von 7% am Tag 9 im Vergleich zur SC-Liraglutid Behandlung (P<0,01). Es zeigte sich eine Reduktion des epididymalen und inguinalen Fettgewebes nach chronischer IH Liraglutid Behandlung im Vergleich zur Kontrollgruppe (P<0,05). Durch die chronische IH Liraglutid Behandlung konnten wir eine 18-fache Induktion von mRNA des hypothalamischen Melanokortin-4-Rezeptors (P<0,01) erzielen. Blutparameter für Glukose und Fettstoffwechsel wurden von beiden Behandlungen nicht beeinflusst, mit Ausnahme einer signifikanten Erhöhung des Thyroxinspiegels im Plasma (P<0,05) nach chronischer IH Liraglutid Behandlung. Wir konnten keinen anorektischen Effekt nach akuter IH und chronischer SC Liraglutid Behandlung beobachten.

Abstract
Liraglutide is a glucagon-like peptide-1 receptor (GLP-1R) agonist and is approved by the FDA and EMA for use in chronic weight management and glycaemic control. Liraglutide possibly exerts its anorectic effects via the GLP-1R in the brain, especially in the hypothalamus. The hypothalamus plays a pivotal role in the maintenance of body weight by regulating appetite and energy expenditure. Animal studies show that acute liraglutide treatment triggers satiety, weight loss and activates thermogenesis in adipose tissue. However, the precise mechanisms underlying the chronic liraglutide-induced weight loss are still under investigation.

In this study, we aimed to evaluate the difference between peripherally (subcutaneous – SC) and centrally (intrahypothalamic – IH) injected liraglutide on body weight regulation in both a chronic and an acute administration. We examined whether energy expenditure, in terms of thermogenesis and browning of adipose tissue or hypothalamic appetite centres are involved in the liraglutide-induced weight loss.

Therefore, healthy and lean male Sprague Dawley rats (N=32) were separated in 4 groups, 2 treatment and 2 control groups. For the chronic study design, we continuously administered liraglutide either intrahypothalamically (IH; 10 µg/day) or subcutaneously (SC; 200 µg/kg/day) for 28 days. For the 24-hours acute study we injected liraglutide (IH liraglutide) or placebo (IH control) once into the hypothalamus of healthy lean rats (N=16). For both studies, we assessed changes in body weight and adipose tissue mass. Adipocyte size of three different adipose tissue depots was evaluated for the chronic study setup. The distribution of subcutaneous and visceral adipose tissues after chronic liraglutide administration was analysed by using micro-CT. For both studies, we examined mRNA signature of markers for browning, thermogenic and adipocyte differentiation in adipose tissue depots as well as markers specific for neurons regulating appetite.

The results show that chronic IH liraglutide administration induced an 8% body weight reduction at day 9 compared to the corresponding control group (P<0.01) and a 7% body weight loss at day 9 compared to SC liraglutide treatment (P<0.01). Epididymal and inguinal adipose tissue mass were significantly reduced after chronic IH liraglutide treatment compared to the control group (P<0.05). Moreover, our data show that chronic IH liraglutide treatment triggered an 18-fold induction of the
hypothalamic melanocortin 4 receptor \((P<0.01) \). Circulating plasma parameters for glucose and fat metabolism were unaffected by both treatments, apart from a significant increase of circulating thyroxine levels \((P<0.05) \) after chronic IH liraglutide treatment. Both acute IH and chronic SC liraglutide treatment were did not trigger an anorectic effect.

Thus we conclude that chronic IH liraglutide is more effective than SC liraglutide treatment in triggering an anorectic effect, by reducing body weight and adipose tissue mass. We further state that this profound reduction in body weight and adipose tissue mass is most likely mediated by the hypothalamic melanocortin 4 receptor system rather than by improved thermogenesis. Further investigations will be needed to assess the role of the central GLP-1R in the regulation of body weight.
GENERAL INTRODUCTION

1 Epidemiology of obesity

Obesity is stated as one of the top ten global health problems by the World Health Organization\(^1\). In the past three decades, the prevalence of obesity increased two-fold, with currently 600 million adults and already 41 million children classified as obese\(^1-4\). If this trend continues, an estimated one-third of the world’s adult population will be overweight (body mass index, BMI \(\geq 25.0 \text{ kg/m}^2\)) and another 20\% will be obese (BMI \(\geq 30.0 \text{ kg/m}^2\)) by 2030\(^5\). In Austria, 51.7\% of adults (20 years or older) are obese or overweight, and already 22.9\% of children (0-9 years) are classified as obese or overweight\(^6\).

Overweight and obesity are no longer limited to high-income countries, but also pose a challenge to low- and middle-income countries\(^1\). In Africa, the prevalence of childhood obesity has nearly doubled in the last two decades\(^1\). This enormous worldwide increase of obesity is considered to be a major health concern with a significant economic burden to all health care systems\(^7\). The rapid increase is mainly regarded to be a result of modern western sedentary lifestyle\(^8,9\). Distinct genetic variations increase obesity prevalence but obesity and overweight are mostly initiated by an imbalance in energy homeostasis when energy intake exceeds energy expenditure\(^8,9\). Obesity and its associated comorbidities, such as type 2 diabetes, coronary heart disease, ischemic stroke and several types of cancer request discovery of new targets and identification of molecular mechanisms responsible for body energy homeostasis\(^10,11\). Energy homeostasis is the control of energy balance in the human body and involves the coordinated homeostatic regulation of food intake and energy expenditure to sustain weight control.
1.1 Energy homeostasis

Energy homeostasis is a biological process that involves the coordinated homeostatic regulation of energy intake (food intake) and energy expenditure (resting metabolic rate, physical activity)12. Energy homeostasis matches intake to expenditure and is thus balancing body weight and body fat content in healthy normal weight individuals13. Changes in the circulating concentrations of metabolites and hormones that are involved in whole-body energy homeostasis are indicative of energy imbalances. In a situation of energy surplus, circulating anorexigenic factors such as leptin, insulin, glucagon-like peptide-1 (GLP-1), peptide YY\textsubscript{3-36} (PYY\textsubscript{3-36}) or glucose are increased, whereas orexigenic factors such as ghrelin are decreased14.

Under steady-state conditions, all ingested nutrients are normally metabolized to maintain a basic metabolic rate, thermogenesis, and muscle action (energy expenditure). Excess energy is stored as glycogen and fat for food deprivation15. To maintain an energy balance, a neural regulator senses nutrient availability in the internal milieu (a process referred to as “adiposity negative feedback”) and generates appropriate signals to the neural circuits controlling appetite and energy expenditure, usually referred to as homeostatic regulation of adiposity and body weight15. Leptin is the major mediator of “adiposity negative feedback” and is secreted in direct proportion from adipose tissue12. Upon food ingestion leptin is secreted from adipose tissue enters the brain and stimulates satiety via activation of hypothalamic satiety neurons12. Beside “adiposity negative feedback” signals numerous hormonal and nutrient-related signals influence appetite. Gut peptides such as PYY\textsubscript{3-36}, GLP-1, or cholecystokinin are responsible for induction of satiety after food ingestion. In contrast, the gut hormone ghrelin is responsible for the stimulation of food intake and is therefore secreted before meal onset16. Ghrelin inhibits the activity of satiety neurons by activating appetite stimulating neurons in the hypothalamus17.
1.2 Energy homeostasis regulated in the hypothalamus

Neurons in the hypothalamus are involved in sensing humoral and local energy signals, which transmit information about the energy status of each individuum14. Previous animal studies have shown that the hypothalamus contains neuronal centers (nuclei) which regulate whole-body energy balance. These hypothalamic centers include nuclei such as the arcuate nucleus (ARC), the paraventricular nucleus (PVN), and the ventromedial hypothalamus (VMH) among others14. Activation or inhibition of those hypothalamic nuclei leads to a change in food intake which results either in weight gain or in weight loss18–20.

Anorexigenic and orexigenic neuronal populations are abundant in the ARC and are regulated by peripheral hormones. Neurons that co-express agouti-related protein (AGRP) and neuropeptide Y (NPY) exert orexigenic effects21. Neurons that co-express α-melanocyte stimulating hormone (α-MSH; product of proopiomelanocortin (POMC) cleavage) and cocaine-and-amphetamine-regulated transcript (CART) exert anorexigenic effects21. Selective ablation of AGRP/NPY neurons in the ARC has led to a reduction in food intake and subsequent weight loss (anorexigenic)22,23, while ablation of POMC/CART neurons causes hyperphagia and weight gain (orexigenic)24,25. Studies on lean and obese animal models have shown that genetic deletion of \textit{Agrp} – and \textit{Npy} expressing neurons did not affect body weight or food intake26–28. Genetic deletion of the \textit{Pomc} expressing neurons resulted in hyperphagia, increased fat mass and increased body length28. Even though studies have shown that genetic deletion of AGRP/NPY neurons did not affect energy homeostasis, it is beyond doubt that AGRP/NPY as well as POMC/CART neurons are critical for the regulation of appetite and energy homeostasis22. AGRP/NPY neurons express receptors for peripheral appetite hormones such as insulin, leptin, and ghrelin29–31. Stimulation of the specific receptor leads to coordinated physiological responses that regulate energy homeostasis through modulation of appetite and/or energy expenditure14. Insulin is secreted from pancreatic β-cells after feeding, which reduces energy intake by targeting the hypothalamic orexigenic AGRP/NPY and anorexigenic POMC/CART neurons. Leptin is secreted from adipocytes proportional to fat mass and targets the hypothalamic orexigenic and anorexigenic neurons which leads to the reduction of food intake32,33. Ghrelin, another important humoral factor, is released from the stomach during fasting.
periods. After a prolonged fasting period (sleep), ghrelin stimulates the orexigenic AGRP/NPY neurons in the hypothalamus and thereby induces appetite and food intake34. AGRP/NPY neurons inhibit POMC/CART neurons by releasing the neurotransmitter GABA (gamma-aminobutyric acid)35. The inhibition of POMC/CART neurons by GABA prevents satiety35-37. An animal study has shown that the orexigenic effect of ghrelin was dependent on GABA release from AGRP neurons36.

The hypothalamus consists of so-called first and second order neurons, which communicate with each other. The first order AGRP/NPY and POMC/CART neurons of the ARC send neuronal projections to the PVN where they stimulate second order neurons of the melanocortin system29,38,39. The POMC/CART neurons in the ARC together with the second order neurons in the PVN constitute the hypothalamic anorexigenic melanocortin system. The melanocortin system in the PVN includes the melanocortin 3 and 4 receptors (MC3R and MC4R). Beside the MC3R and MC4R expressing neurons, other neurons, which release appetite suppressants such as thyrotropin-releasing hormone are present in the PVN40,41. The anorexigenic melanocortin system in the hypothalamic PVN42 is stimulated by the peptide α-MSH released from POMC/CART neurons in the ARC33. The binding and activation of the MC4R by α-MSH lead to weight loss and suppression of food intake24,43. Inactivation of the MC4R by genetic deletion results in severe obesity44. In rodents, it has been shown that intracerebroventricular administration of a common MC4R agonist (MTII) resulted in a decrease of food intake, this effect was blocked by the administration of the MC4R antagonist (SHU9119)43,44 proving that the suppression of food intake is dependent on MC4R activation. MC4R probably exerts its anorexigenic effects by regulating the expression of brain-derived neurotrophic factor (BDNF) and the AMP-activated protein kinase in the VMH14,38,45. The VMH has been shown to play a major role in appetite regulation and in addition regulates energy balance by regulating thermogenesis in brown and white adipose tissue depots38,39. A study performed in conditional knock-out mice has shown that BDNF expressing neurons control energy balance14. Genetic deletion of BDNF has led to hyperphagia and obesity in humans and mice whereas administration of BDNF has led to body weight loss and reduction in food intake through MC4R signaling45.

Altogether, the melanocortin system controls appetite in a highly ordered manner by stimulating or inhibiting different brain areas that regulate appetite, energy
expenditure, and energy balance by synergizing metabolism, cognition, and reward. These brain systems are closely connected to each other and communicate via neuronal projections. Energy homeostasis is regulated by the hypothalamus and the pituitary gland (pituitary-hypothalamic axis), the reward system includes the nucleus accumbens and the ventral tegmental area, the cognitive part is regulated by the hippocampus, amygdala and the thalamus. This complexity and variety in systems involved in appetite regulation indicate that energy homeostasis consists of tightly regulated and conserved mechanisms.
2 Liraglutide as an anti-obesity drug

Liraglutide is a long-acting glucagon-like peptide-1 (GLP-1) analogue and has been approved by FDA and EMA for type 2 diabetes and obesity. Liraglutide, as an anti-obesity drug was approved for adults with a BMI of 30 or higher or for adults with a BMI of 27 or higher who have at least one weight-related comorbid condition (type 2 diabetes, hypertension, elevated cholesterol). Liraglutide shares 97% structural homology with the human endogenous peptide GLP-1, which is secreted from enteroendocrine L-cells in the gut in the distal ileum and jejunum in response to nutrient ingestion. Upon stimulation (food ingestion) GLP-1 is secreted from L-cells and amplifies pancreatic insulin secretion from β-cells and decreases glucagon secretion in a glucose-dependent manner thereby lowering blood glucose levels. Numerous studies have demonstrated that peripheral administration of GLP-1 or GLP-1 analogues decreases food intake and reduces body weight through the induction of satiety. Because GLP-1 analogues stimulate insulin secretion and inhibit glucagon secretion exclusively in a glucose-dependent manner, the risk of developing hypoglycaemia is very low, which favours these agents as treatment for obesity and type 2 diabetes mellitus.

2.1 Pharmacokinetics of liraglutide (Adsorption, Distribution, Metabolism, Toxicity – ADMET)

Since endogenous GLP-1 is quickly (half-life of approx. 2 minutes) enzymatically degraded by dipeptidyl peptidase IV (DPP-IV) and cleared by the kidneys, long-acting GLP-1 analogues, such as liraglutide were developed. Liraglutide has an elimination half-life of 10-14 hours due to modification of the peptide with an amino acid substitution at position 34 (replacing lysine with arginine) and the addition of a 16-carbon fatty acid chain to lysine at position 26. These modifications allow the prolonged activity of liraglutide, by forming heptamers in solution as well as through a high binding affinity (>98%) to albumin in the circulation, thus making it relatively resistant to degradation by DPP-IV. Bioavailability for subcutaneously administered liraglutide is ~55% resulting in the maximum concentration at 11 hours, allowing for once-daily dosing in humans. After subcutaneous administration of 3 mg liraglutide, the volume of distribution is about 20–25 L, which means that liraglutide is mainly distributed throughout the circulation. In contrast to the native
GLP-1, liraglutide is taken up by multiple organs and degraded enzymatically by neprilysin and DPP-IV54–56. Liraglutide has a favourable safety profile with mild to moderate side effects like vomiting, nausea, and diarrhoea which can be eliminated by slow uptitration of liraglutide dosing52.

2.2 Liraglutide and energy homeostasis

Liraglutide mediates its actions through the G-protein coupled GLP-1 receptor (GLP-1R). The GLP-1R is expressed in pancreatic islets, enteric nervous tissue, lung, heart, kidney, small and large intestine, stomach and in the brain57,58. In the brain, the GLP-1R occurs in regions that control energy homeostasis (food intake, energy expenditure), such as the brainstem and the hypothalamus57,59. Native GLP-1 and liraglutide induce satiety via the GLP-1R at different sites in the body. This has been shown in studies in which centrally or peripherally expressed GLP-1R were pharmacologically antagonized or genetically deleted and stimulated either with peripherally injected GLP-1 or liraglutide. These studies have demonstrated that native GLP-1 exerts its anorexigenic effects on food intake via peripherally expressed GLP-1 receptors, whereas liraglutide seems to act through central GLP-1 receptors60–63.

The potential for peripherally administered GLP-1 as anti-obesity drug has been first shown in humans in acute studies with exogenous GLP-1 administration35,64,65. GLP-1 reduced caloric intake by regulating all components of appetite regulation: increased satiety and decreased hunger35,64,65. In a clinical phase 2 trial, including obese patients with a BMI ≥ 30 kg/m2, liraglutide reduced body weight in a dose-dependent fashion, with the highest dose (3 mg) resulting in the greatest body weight reduction (7.2 kg)66. In addition, clinical phase 3 studies have demonstrated a body weight loss of 5 to 10% in obese patients treated over 56 weeks with liraglutide (3 mg)67–69. The liraglutide-induced body weight loss was caused by a substantial loss of body fat of approximately 15%7. Liraglutide has beneficial effects on body weight, cardiovascular outcomes, and glycaemic control, but it was assumed that its long-term use could result in pancreatitis and thyroid cancer caused by stimulation of β-cell and C-cell proliferation in rodents7,70. Nevertheless, in humans, the development of pancreatitis and thyroid cancer has not been reported because human β-cells and thyroid C-cells express the GLP-1R at a much lower density than rodents71.
Animal and human studies have shown that liraglutide treatment leads to body weight loss, but data on possible mechanisms underlying the chronic body weight management of liraglutide are still limited. A recent clinical study in obese non-diabetic subjects examined the mechanisms behind the liraglutide-induced weight loss over 5 weeks. Patients either received subcutaneous liraglutide with a dose of 1.8 mg (the dose approved for diabetes treatment), 3 mg (the dose approved for obesity treatment) or placebo. The effect of liraglutide on energy intake and energy expenditure was assessed. After 5 weeks of liraglutide treatment (3 mg), a reduction in energy intake, and an increase in satiety rather than increased energy expenditure have been attributed to the observed liraglutide-induced weight loss. In contrast, a recent study has elucidated the role of energy expenditure in liraglutide-induced weight loss in obese type 2 diabetic (T2D) patients treated with metformin in combination with liraglutide. The 1-year combinational therapy has resulted in a significant increase in resting energy expenditure relative to free fat mass and a decrease in BMI. The apparent discrepancies between studies have been explained by the length of the treatment period (4-12 weeks vs. 1 year).

In addition to the action of liraglutide on centres in the brain responsible for energy homeostasis, such as the hypothalamus and the brainstem it has been reported that liraglutide also stimulates the central reward system. Acute studies in obese T2D patients and rodents have demonstrated that GLP-1R agonists promote weight loss and reduction in food intake through the activation of appetite – and reward-related brain areas. Appetite – and reward related brain areas such as amygdala play an important role in the GLP-1R-induced satiety. This has been demonstrated in a human psychological study, where the GLP-1R antagonist, exendin 9-39 blocked the response to food-related images in obese T2D subjects, supporting the view that GLP-1R agonists promote weight loss by reducing the hyperresponsiveness to pictures of high-caloric food. The putative role of GLP-1R in the brain is further supported by studies in rodents, in which acute intracerebroventricular GLP-1 administration has shown that GLP-1 potently inhibits food intake. On the other hand, in humans subcutaneously administered liraglutide in a dose of 30 - 40 nM was not detected in cerebrospinal fluid (CSF). Liraglutide is mainly bound to albumin in the circulation and only small amounts are freely available and ready to cross the blood-brain barrier (BBB). Furthermore, there was no correlation between body weight loss observed upon subcutaneous liraglutide administration and
concentrations of liraglutide found in CSF78. Based on the concept of albumin binding, it is not likely that liraglutide crosses the BBB to a larger extent. However, an acute study in rodents has demonstrated that subcutaneously administered liraglutide accumulates in some areas in the brain35. The access of liraglutide to different brain areas has been shown after injecting fluorescently labelled liraglutide (400 µg/kg) subcutaneously in mice35. In the mouse brain, labelled liraglutide was observed in all circumventricular organs, including the media eminence, the subfornical organ, the organum vasculosum of the lamina terminalis and the choroid plexus35. Liraglutide has also been observed within the hypothalamic regions protected by the BBB, including the arcuate nucleus (ARC) and the paraventricular nucleus (PVN)35. A recent study identified more specifically the anorexigenic POMC/CART neurons in the ARC of the hypothalamus as the main mediators of liraglutide-induced weight and appetite reducing effects35. The inconsistency among human and rodent studies may come from different dosing (3 mg/day vs. 200 µg/kg/BID), and the shorter half-life of liraglutide in rodents80. The observed distribution pattern of fluorescently labelled liraglutide has shown a pivotal role of the central GLP-1R in the regulation of energy homeostasis. Acute studies in rodents directly targeting specific hypothalamic nuclei revealed that the ARC, the PVN, and the VMH mediate the body weight -and appetite-reducing effects of liraglutide38. The GLP-1R in the hypothalamus is essential for liraglutide-induced appetite signalling. Studies in diet-induced obese mice have shown that pharmacologic blockade or genetic deletion of the central GLP-1R lead to reduced ability to maintain body weight and an increase in food intake60,81. A recent acute study in rodents, where stimulation of GLP-1 receptors in the VMH has resulted in body weight loss independent of caloric intake, has shown that loss in body weight is due to the activation of the AMPK pathway in the VMH38. The AMPK pathway in the VMH stimulates energy expenditure in terms of increased thermogenesis and browning prevalence in brown and white adipose tissue38.
Aim of the study

After careful revising the literature still several questions remain open. The aim of my PhD project was to elucidate the following questions.

1. What is the difference between central and peripheral delivery of liraglutide on energy homeostasis?
2. What is the difference between acute and chronic central delivery of liraglutide on energy homeostasis?
3. What are the underlying mechanisms of chronic central liraglutide-induced weight loss?
 a. Does chronic central liraglutide treatment induce thermogenesis and increase browning of white and brown adipose tissue?
 b. Are there direct pharmacological effects on the brain? We hypothesized that the hypothalamic melanocortin system might be involved.

We aimed to evaluate if either central or peripheral chronic administration of liraglutide induce sustained weight loss through increased thermogenesis and to which extent the hypothalamic melanocortin system is involved in the liraglutide-induced weight loss in healthy lean rats on a normal diet.
CHAPTER 1

Establishment of a focal drug delivery system to the hypothalamus
3 Establishment of a focal drug delivery system to the hypothalamus

3.1 Abstract

The hypothalamus is located above the midbrain and below the thalamus and both together construct the ventral diencephalon of the brain. Because of the hypothalamus’ position, it is difficult to target the hypothalamus without causing severe damage to other brain areas. Energy homeostasis is regulated by different appetite regulating neurons, each triggering different physiological responses. These neurons constantly communicate with the endocrine system and compensate for metabolic imbalances. To examine the specific neuronal role in energy homeostasis, a focal drug delivery system is essential to continuously and directly target these neuronal centres without glial scar formation.

We aimed to establish such a focal drug delivery system for continuous and chronic drug delivery directly to the hypothalamus. We started by evaluating three different materials (stainless steel, Teflon, polyether ether ketone - PEEK), for their usage as material for implanted brain cannulae. We investigated the effect of these materials on body weight and the effect of PEEK on tissue damage by staining inflammatory cell markers and marker for reactive astrogliosis. We determined the body weight daily to assess interferences from the used material or implantation on body weight development. We evaluated successful substance delivery to the hypothalamus by injecting sodium fluorescein as a marker via the brain cannula. Sodium fluorescein concentrations were spectrophotometrically analysed in the supernatant of hypothalamic tissue homogenates.

We evaluated if substance delivery to the hypothalamus was successful by injecting the marker sodium fluorescein via the brain cannula and spectrophotometrically analysed the concentration of sodium fluorescein in the supernatant of hypothalamic tissue homogenates.

The low abundance of macrophages and microglia in the tissue surrounding the cannula indicated that PEEK is biocompatible. We did not observe any changes to the material surface upon cannula removal which indicates that PEEK is mechanically stable to the brain’s micro-motion over 14 days of cannula implantation. We did not observe any change in body weight development during the implantation.
of the PEEK cannula and were able to demonstrate that substance delivery to the hypothalamus was not hindered by astrogliosis and resulting glial scar formation.

3.2 Aim

In this project we aimed to identify the most suitable cannula material for focal drug delivery system to the hypothalamus. We intended to identify which focal drug delivery system for chronic and continuous intrahypothalamic drug administration does not cause severe damage to the surrounding brain areas and guarantees successful substance delivery. We also investigated if the cannula material is compatible with micro-computer tomography imaging.
3.3 Introduction

Specific brain regions can be studied by targeted delivery of pharmacological agents to these regions. Targeted delivery to a specific brain site guarantees the study of precise neuronal activities and difficulties with the permeability across the blood brain barrier is avoided. This approach can be applied in multiple ways in neuroscience such as investigating the actions of psychotropic agents82–84, providing controlled models of brain inflammation85–87, enabling chronic administration of trophic factors84,88,89, and examining the central control of energy homeostasis38,39,90,91.

The focal delivery of substances to the hypothalamus is challenging. One of the main challenges is to reach the hypothalamus, without causing severe damage of other brain regions. Therefore a well-established and appropriate method is needed to deliver substances directly to the site of interest. Targeted delivery of pharmaceutical agents to examine their pharmacodynamics in the hypothalamus requires a biocompatible focal drug delivery system, which provokes minimal damage in surrounding brain areas. To guarantee minimal damage, the cannula should be small in size and robust, but flexible enough to withstand brain’s micro-motions92. The cannula material should be resistant to material degradation and suitable for long-lasting implantations92.

The response of the central nervous system to tissue damage is unique and includes the proliferation and activation of microglia and astrocytes93. Microglia are derived from the monocyte lineage and immunologically resemble macrophages94. They are immunologically active within minutes upon tissue damage and start to proliferate, phagocytose invading pathogens, remove debris, secrete mediators that promote astrocitosis and induce neuronal degeneration94. The second immunologically response to tissue damage is the activation of astrocytes which play an essential role in the healing phase following tissue damage. The excessive proliferation of astrocytes, termed reactive astrogliosis, can be visualised by staining for glial fibrillary acidic protein (GFAP), a cytoskeletal marker for astrocytes95,93. The induction of reactive astrogliosis and its resulting glial scar formation are the reason for the limited application time of most membrane-based brain cannula systems96. Glial scar formation hinders the chronic application of pharmaceutical substances to specific brain regions through membrane-based cannula systems96. Therefore, avoiding membrane-based cannula system minimizes adhesion of cells and substances to the
cannula surface (biofouling) and reduces damage to the tissue surrounding the cannula for 30 days of implantation96.

Stainless steel has been associated with tissue reactions in bone and soft tissues and has been found to undergo corrosion and toxic ion release \textit{in vivo} and \textit{in vitro} models97–99. Additionally, there is potential carcinogenicity associated with long-term implants of stainless steel100.
3.4 Research design and methods

3.4.1 Animal Models
Male Sprague-Dawley (S.D.) rats (12–15 weeks old, 320–450 g; Harlan Laboratories, Udine, Italy) were housed under conditions of controlled temperature (23°C) and illumination (12-h light/dark cycle). Rats were allowed ad libitum access to water and standard laboratory chow. Animals were sacrificed by decapitation. The brain was removed immediately after transcardial perfusion. All animal experiments were approved by the Austrian Federal Government (BMWF-66.010/0003-II/10b/2010) and were performed in consent with Directive 2010/63/EU on the protection of animals used for scientific purposes.

3.4.2 Study design
Male Sprague Dawley rats were randomly assigned to one of three groups (each N=3) (Table 1). We implanted brain cannulae (Bilaney Consultants, Düsseldorf, Germany) composed of different material into the hypothalamus of three different rat groups (Table 2). The brain cannulae were inserted to the dorsal part of the paraventricular nucleus of the hypothalamus (stereotactic coordinates: 0.6 mm right from midline, 1.7 mm posterior to bregma and 7.6 mm from skull surface). We assessed the body weight of all rats daily for 14-days cannula implantation. Rats were checked daily for behaviour changes, suggestive of neurotoxicity. At day 14 rats were sacrificed and brain tissue was extracted.

Table 1 – Material and position of implanted cannulae. Each group included three rats and the study duration was 14 days. AP (anterior -posterior), ML (medial – lateral), DV (dorsal – ventral);

<table>
<thead>
<tr>
<th>Group number</th>
<th>Cannula material</th>
<th>Stereotactic coordinates [mm]</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stainless steel</td>
<td>AP – 1.7, ML – 0.6, DV – 7.6</td>
</tr>
<tr>
<td>2</td>
<td>Teflon</td>
<td>AP – 1.7, ML – 0.6, DV – 7.6</td>
</tr>
<tr>
<td>3</td>
<td>PEEK</td>
<td>AP – 1.7, ML – 0.6, DV – 7.6</td>
</tr>
</tbody>
</table>
Table 2 – Technical specifications of implanted cannulae. O.D. (outer diameter), I.D. (inner diameter):

<table>
<thead>
<tr>
<th>Part number</th>
<th>Cannula size [gauge]</th>
<th>Cannula size [mm]</th>
<th>Cannula length below pedestal [mm]</th>
<th>Cannula material</th>
</tr>
</thead>
<tbody>
<tr>
<td>328OP/SP</td>
<td>28</td>
<td>O.D. 0.36</td>
<td>7.6</td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I.D. 0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>328OPT/SP</td>
<td>28</td>
<td>O.D. 0.36</td>
<td>7.6</td>
<td>Teflon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I.D. 0.18</td>
<td></td>
<td></td>
</tr>
<tr>
<td>328OP/PK/SP</td>
<td>28</td>
<td>O.D. 0.36</td>
<td>7.6</td>
<td>PEEK</td>
</tr>
<tr>
<td></td>
<td></td>
<td>I.D. 0.18</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.3 Surgical implantation of three different brain cannulae into the hypothalamus

Before implantation, rats were individually placed in an anesthesia induction chamber (Rothacher, Heitenried, Switzerland). Anesthesia was induced with 4 vol% isoflurane (Isoflo, Esteve Farma, Carnaxide, Portugal) in 100% oxygen with a flow rate of 5 l/min until loss of righting reflex. Anesthesia was maintained with an injectable anaesthetic (0.1 ml/kg; 0.5 mg/kg Midazolam, 5 µg/kg Fentanyl, 5 mg/kg Domitor; 1mL/1kg body weight, ERWO Pharma GmbH, Hameln pharma plus GmbH, Vienna, Austria). Anesthesia was maintained with isoflurane in 100% oxygen at a flow rate of 1.5 l/min. The head was fixed in a stereotactic frame (KOPF Instruments, CA, USA) and rats were prepared for surgery by shaving the head and disinfecting the skin with 70% ethanol. A spherical dental drill was used to drill a 1 mm hole into the skull leaving the dura intact. The dura was then punctured with fine forceps in order to create a defined opening of the meninges. Cannulae made of different material (PlasticsOne, Bilaney Consultants, Düsseldorf, Germany) were inserted slowly to a depth of 7.6 mm 1.7 mm posterior to the bregma and 0.6 mm from midline (AP – 1.7 mm; ML – 0.6 mm; DV – 7.6 mm) and fixed to the skull using four anchor screws and biocompatible dental cement (iCEM Self-Adhesive; Heraeus, Hanau, Germany). After surgery, rats received analgesics and anti-inflammatory treatment for the following
two days (50 mg/kg Claforan, Sanofi-Aventis GmbH, Vienna, Austria; 50 mg/ml Carprofen; Pfizer Corporation Austria GmbH, Vienna, Austria).

3.4.4 Stereotactic coordinates
The stereotactic coordinates to reach the dorsal part of the paraventricular nucleus of the hypothalamus were determined using the dimensions of the coronal sections from the rat brain atlas (Figure 1)101.

Figure 1 – Coronal section of the rat brain indicating the stereotactic coordinates. The left picture shows the coronal section of the rat brain 1.72 mm posterior to bregma, and the right image is its enlargement. The tip of the implanted cannula is indicated by the red dot at the paraventricular dorsal part of the hypothalamus. The black lines indicate the position from bregma (0.6 mm) and from skull surface (7.6 mm)101. Figure modified from Paxinos and Watson101.

3.4.5 Evaluating the effect of three different implantation materials on body weight
Rats were weighed daily for 14 days on a precise laboratory scale (Competence CP3202S-0CE, Sartorius AG, Göttingen, Germany).

3.4.6 Immunohistochemical analysis of reactive astrogliosis, microglial activation, and thymocyte infiltration
The brain was fixed in 4% paraformaldehyde in 0.1 M phosphate buffered saline pH 7.2 (PBS) over night at room temperature and further processed and embedded in paraffin by using the Sakura Tissue Tek working station (VIP 5E-F2, Sanova Diagnostics, Vienna, Austria). Brains were sectioned (section thickness 1.5 µm) around the implantation site and were examined by haematoxylin and eosin (H&E) staining. Diaminobenzidine immunohistochemistry and heat mediated antigen
retrieval with citrate buffer (pH 6) was performed to detect expression of markers for thymocyte infiltration (W3/13) (1:100, ab33885, Abcam, Cambridge, UK), for reactive astrogliosis (GFAP) (1:1000, ab7260, Abcam, Cambridge, UK) and for active microglia/macrophages (ED1) (1:100, ab31630, Abcam, Cambridge, UK).

For H&E staining, brains were fixed in 4% PFA over night at 4°C, washed three times with PBS and incubated in freshly prepared 20% sucrose in PBS over night at 4°C. Brains were stored at -20°C in TissueTek wells embedded in OCT solution till cryocutting and staining.

3.4.7 Histological and spectrophotometrical verification of correct substance delivery and placement of the brain cannula

Induction of anesthesia is described in section 3.4.3. The cannula was inserted into the rat brain directly to the paraventricular dorsal part of the hypothalamus according to the rat brain stereotactic coordinates mentioned above (AP – 1.7 mm; ML – 0.6 mm; DV – 7.6 mm). To remove residual blood from the inner surface of the cannula and the surrounding brain tissue, the cannula was rinsed with 2 µL of 0.9% phosphate buffered saline (PBS) upon implantation. A volume of 3 µl of sodium fluorescein (NaF; 7.5 mg/mL diluted in saline) was injected through the cannula into the hypothalamus for 30 min (approx. flow rate 0.1 µl/min). After sacrification by decapitation, brains were excised, and the hypothalamus was dissected. Part of the frontal cortex was dissected, and served as control tissue. Tissues were stored in 1.5 ml test tubes and weighed on an analytical balance (M-Power AZ214, Sartorius AG, Göttingen, Germany). Tissues were dissolved in sterile water (w/v) (Aqua-bidest, Fresenius Kabi, Graz, Austria) and homogenized by vortexing. The tissue homogenates were stored in the fridge at 4°C over night to allow diffusion of the marker sodium fluorescein to the aqueous phase. After 24 hours the test tubes were centrifuged and the supernatant was transferred to new 1.5 ml test tubes. The increase in fluorescence intensity of sodium fluorescein was measured spectrophotometricaly in the supernatants via Microplate Reader Synergy HT (Biotek, Vienna, Austria) (emission wavelength of 485 nm) at Joanneum Research HEALTH (Graz, Austria).
3.5 Results

3.5.1 Body weight development was unaffected for 14-days PEEK cannula implantation

We observed that rats implanted with stainless steel cannulae had an increased body weight loss of 3% at day 1 compared to baseline (Figure 2). Rats implanted with a stainless steel cannula reached baseline at day 4 (Figure 2). We showed that PEEK cannula implantation led to body weight reduction of 1% at day (Figure 2). Teflon did not trigger a postsurgical body weight loss compared to baseline (Figure 2). Rats with PEEK and Teflon implanted cannulae reached their initial pre-surgical weight at day 2 (Figure 2). Rats implanted with PEEK or Teflon brain cannulae showed a body weight gain of 10% at the day 12 compared to baseline (Figure 2). Teflon and PEEK showed almost the same body weight development (Figure 2).

Figure 2 – PEEK leads to a modest and normal body weight gain. The effect of stainless steel (gray), Teflon (black) and PEEK (green) on change of body weight over 14 days cannula implantation to the hypothalamus. Body weight was normalized to baseline (before surgery). N=3 each group. Data is given as mean ± SEM.

3.5.2 Glial scar formation and thymocyte infiltration after 14-days implantation of PEEK cannula are mild

We observed low expression of the microglia marker ED1 in close vicinity to the implantation site 14 days after PEEK cannula implantation (Figure 3). After 14 days
of PEEK cannula implantation, we observed no qualitative difference in expression of the astrocyte marker GFAP at the cannula implantation site compared to the rest of the hypothalamic tissue (Figure 4). We observed no infiltration of thymocytes to the surrounding tissue of the PEEK cannula implantation site after 14 days compared to the rest of the hypothalamic tissue (Figure 5).
Figure 3 – PEEK causes a slight infiltration of microglia to the site of cannula implantation. (A) Brightfield immunohistochemistry for ED1 counterstained with haematoxylin in rat brain specimens, overview with details (boxed areas). (B) The detailed histological appearance of microglia after 14 days cannula implantation (hypothalamus). Scale bars surveys = 200 µm, details = 100 µm; 3V = third ventricle; VMH = ventromedial hypothalamus; PLH = posterior lateral hypothalamus;

Figure 4 – PEEK causes no reactive astrogliosis after 14 days of cannula implantation. (A) Brightfield immunohistochemistry for GFAP counterstained with haematoxylin in rat brain specimens, overview with details (boxed areas). (B) Detailed histological appearance of reactive astrocytes after 14 days of cannula implantation (hypothalamus). Scale bars surveys = 200 µm, details = 100 µm; 3V = third ventricle; VMH = ventromedial hypothalamus; PLH = posterior lateral hypothalamus;
Figure 5 – PEEK does not stimulate thymocyte infiltration after 14 days of cannula implantation. (A) Brightfield immunohistochemistry for W3/13 counterstained with haematoxylin in rat brain specimens, overview with details (boxed areas). (B) Detailed histological appearance of thymocytes after 14 days of cannula implantation (hypothalamus). Scale bars surveys = 200 µm, details = 100 µm; 3V = third ventricle; VMH = ventromedial hypothalamus; PLH = posterior lateral hypothalamus;
3.5.3 Verification of cannula placement and successful substance delivery to the hypothalamus

The brain cannula was implanted correctly to the paraventricular dorsal part of the hypothalamus indicated by the probe tip (Figure 6A). We visualised the insertion channel by injecting the dye Evans Blue (Figure 6B). We observed the correct insertion of the brain cannula by visualising the insertion channel by injecting the dye Evans Blue (Figure 6B). We quantitatively showed that delivery of sodium fluorescein was specific to the hypothalamus compared to the control region, which is indicated by a higher fluorescence intensity (Figure 6C).

Figure 6 – Substance delivery to the hypothalamus. (A) H&E staining of a 5-µm thick coronal section of the rat hypothalamus with the indicated correct placement of the implanted PEEK cannula tip (AP - 1.7; ML - 0.6; DV - 7.6 mm); (B) Stained (blue line) cannula channel and cannula tip in the rat brain by using Evans Blue as marker. (C) Quantitative assessment of intrahypothalamic NaF (sodium fluorescein) administration via PEEK brain cannula. PLH (peduncular part of the lateral hypothalamus), VMH (ventromedial hypothalamus), ARC (arcuate nucleus), 3V (third ventricle); (Kaineder et al, 2017, unpublished results)
3.6 Discussion

Three different materials were tested for their biocompatibility, immunoreactivity, and suitability for chronic substance delivery to the hypothalamus. The implantation of PEEK cannulae did not influence body weight development throughout the study period of 14 days. PEEK stimulated only a mild increase in microglia and astrocyte infiltration in close vicinity of the cannula tip and did not affect thymocyte infiltration after 14 days of cannula implantation. The mild increase in the expression of astrogliosis markers showed low accumulation of astrocytes, which did not hinder substance delivery to the hypothalamus.

Body weight was our read out parameter of choice in terms of representing the health status of the rats and to ensure that cannula implantation to the hypothalamus itself does not lead to body weight loss. We showed that stainless steel led to the highest body weight loss after surgery and reduced gain in body weight after 14 days cannula implantation compared to PEEK and Teflon. Stainless steel is suggested to be the most suitable cannula material for stereotactic implantation at specific coordinates in the CNS102 but it is known that soft tissues are sensitive to metal reactions and it has been found that stainless steel undergoes corrosion and toxic ion release \textit{in vivo} and \textit{in vitro}97–99. In addition, chronic tissue implantation of stainless steel has been associated with potential carcinogenicity100 and is also not compatible with radiographic imaging (micro-CT). Our data indicated that neither implantation of PEEK nor Teflon induced a significant body weight loss and that the body weight gain was similar for both materials. PEEK and Teflon share similar material characteristics and are both FDA approved as medical implants103. They share characteristics such as good chemical resistance and good dielectric strength (electrical insulation)103. But PEEK has higher flexural modulus (bending stiffness) of 590,000 psi than Teflon (72,000 psi) and a higher tensile strength (14,000 psi vs. 1,500 – 3,000 psi), it is stronger, stiffer and still flexible enough for deep brain tissue implantation103, such as implantation into the hypothalamus. The brain is continually pulsating due to vascular and respiratory oscillations, and small relative movement (micro-motion) between cannula and tissue induces some level of strain104. Therefore the cannula material has to be flexible to prevent shear forces on the brain tissue. We assume that flexibility reduces mechanical stress caused by micro-motions of the brain floating in cerebrospinal fluid while the cannula is fixed to the skull. In contrast, material stiffness facilitates the focal insertion of the cannula to the hypothalamus.
Because PEEK shows a remarkable combination of flexibility, strength, and stiffness properties105, we chose to further investigate the histopathological effects of PEEK on the surrounding brain tissue after 14 days implantation.

As expected, we observed only low abundance of microglia after 14 days of PEEK cannula implantation, because resting microglia react to brain injury within a few minutes94. We observed newly activated, rod like, phagocytic microglia in close vicinity to the cannula channel and less active microglia surrounding the cannula tip after 14 days of implantation. This ensured free substance diffusion to the hypothalamus. In accordance with data from another animal study, in which we compared membrane-based (microdialysis) with non-membrane based (cerebral open flow microperfusion) brain cannula systems96, we observed no microglia activation in areas more distant from the cannula tip. The implantation of the cannula triggered only mild thymocyte infiltration to the cannula tip. PEEK seemed to be an immunological inert material, indicated by the slight thymocyte infiltration after 14 days of implantation. We noticed reactive astrocytes close to the cannula tip, but we suggest that they only form mild to moderate astrogliosis without any scar formation as we did not have any problems with substance delivery to the hypothalamus, demonstrated by successful sodium fluorescein administration via the cannula.

Our data showed that delivery of sodium fluorescein to the hypothalamus via PEEK cannulae was successful. We observed higher concentration of sodium fluorescein in hypothalamic extracts compared to the control group. Therefore, we assume that sodium fluorescein was directly delivered to the hypothalamus by the used cannula system.

Considering our results, we chose PEEK as material for the brain cannula experiments, because it did not influence normal body weight development, was biocompatible with surrounding brain tissue, provided successful drug delivery and was compatible to be used with micro-CT imaging.

The established continuous focal drug delivery system to the hypothalamus is important for our next study, which aimed to investigate the chronic effect of liraglutide (Victoza, Novo Nordisk) on energy homeostasis in the hypothalamus.
CHAPTER 2

The chronic effect of continuous liraglutide treatment on energy homeostasis
4 The chronic effect of continuous liraglutide treatment on energy homeostasis

4.1 Abstract

The hypothalamus regulates energy homeostasis by responding to neuropeptides, such as GLP-1. Since GLP-1 is rapidly degraded, liraglutide a GLP-1 receptor agonist is marketed for chronic obesity treatment. Liraglutide induces body weight reduction possibly via stimulation of the GLP-1 receptor (GLP-1R), which is expressed in the hypothalamus. In animal studies, acute liraglutide treatment triggers weight loss, satiety and stimulates thermogenesis in adipose tissue. The precise mechanisms how liraglutide particularly affects chronic weight loss are still under investigation.

We evaluated whether chronic hypothalamic (central) or chronic subcutaneous (peripheral) administration of liraglutide induce sustained weight loss through altered adipose tissue function and to which extent hypothalamic neuronal appetite regulators are involved in the liraglutide-induced weight loss in healthy lean rats on normal diet. We continuously administered liraglutide either intrahypothalamically (IH) (10 µg/day) or subcutaneously (SC) (200 µg/kg/day) for 28 days to lean Sprague Dawley rats (N=8 each) via ALZET osmotic pumps. We analysed body weight continuously for 28 days. Adipose tissue mass and adipocyte size of three different fat depots were examined. Subcutaneous and visceral adipose tissue volumes in the abdominal region were measured by using micro-CT. We examined genetic expression patterns of browning, thermogenic and adipocyte differentiation markers in three different adipose tissue depots as well as particular neuronal markers for appetite neurons in the hypothalamus.

Central (IH) liraglutide administration induced an 8% body weight reduction at day 9 compared to the control group (P<0.01) and a 7% body weight loss at day 9 compared to peripheral (SC) liraglutide treatment (P<0.01). This data was in line with a significant reduction of adipose tissue mass and adipose tissue volume with central liraglutide treatment (P<0.05). Our data show that chronic central liraglutide treatment triggered an 18-fold induction of the hypothalamic mc4r gene (P<0.01). We observed a significant increase in circulating thyroxine (T4) levels (P<0.05).

Chronic central liraglutide administration resulted in profound reduction in body weight and reduction in fat mass most likely mediated by the anorexigenic
hypothalamic melanocortin system (MC4R) rather than by adipose tissue browning or enhanced thermogenesis of evaluated adipose tissue.

4.2 Aim

We aimed to investigate the chronic effects of central (IH) and peripheral (SC) liraglutide treatment on body weight development, adipose tissue distribution, glucose and fatty acid metabolism, and molecular mechanisms regulating energy homeostasis in one single study. We intended to study the potency of the peripherally and centrally expressed GLP-1R in terms of body weight reduction.
4.3 Introduction

Liraglutide (Victoza®, Novo Nordisk) was approved for the treatment of type 2 diabetes mellitus in Europe in 2009 and in the USA in 2010107. In 2014, liraglutide (Saxenda®, Novo Nordisk) was approved by the FDA and in 2015 by the EMA as chronic obesity treatment for adults with a BMI ≥ 30 or a BMI ≥ 27 who have at least one weight-related comorbid condition, such as hypertension, type 2 diabetes, or elevated cholesterol levels7. Liraglutide reduces caloric intake and subsequently leads to moderate but sustained weight loss66. The underlying mechanisms mediating the chronic anorectic and body weight-reducing effects are not clear79. It was reported that genetically modified mice, which lack the GLP-1 receptor in the brain, lose their ability to induce satiety and maintain body weight after subcutaneous liraglutide administration60. In addition, pharmacologically antagonizing the GLP-1R in the brain of rats resulted in a reduced ability to induce satiety and induce weight loss81. These studies identified the GLP-1R in the brain as major player in the regulation of appetite and body weight.

Acute central liraglutide treatment in rodents has been shown to result in body weight loss independent of food intake38. Instead, body weight loss has been attributed to the stimulation of thermogenesis in the brown adipose tissue (BAT) and browning of white adipose tissue (WAT) via the hypothalamic AMP-activated protein kinase (AMPK) pathway in the VMH38. A recent study identified the hypothalamic POMC/CART neurons in the ARC as the main mediators of the liraglutide-induced weight loss after peripheral liraglutide administration35. It was shown, at least in animals that peripherally injected liraglutide was transported to regions in the brain which are protected by the blood brain barrier (BBB)35, such as the ARC. In contrast, in humans it has been reported that peripheral liraglutide administration often leads to only limited effects mediated in the brain because only small amounts (~1-2%) of the large liraglutide-albumin complex can freely cross the BBB79. In humans, peripherally administered liraglutide transported to the brain did not correlate with the observed weight loss78.

A direct comparison of chronic central and chronic peripheral liraglutide administration in a single study would help to link existing studies investigating either central or peripheral administration of liraglutide and would clarify whether liraglutide is more effective centrally or in the periphery. Such comparative data on chronic central and peripheral effects of liraglutide are necessary to identify new pathways to
improve the pharmacological benefits of chronic obesity treatment. (Kaineder et al., IJO 2017, unpublished results).

Parts of this thesis are adapted from the publication Kaineder et al. “Continuous intrahypothalamic rather than subcutaneous liraglutide administration leads to reduced body weight gain and stimulation of melanocortin system”, published 2017 in the International Journal of Obesity.
4.3.1 Animal models
Male Sprague Dawley (S.D.) rats (12–15 weeks old, 400–450 g; Charles River Laboratories) were housed under conditions of controlled temperature (23°C) and illumination (12-h light/dark cycle). Rats were allowed ad libitum access to water and standard laboratory chow diet. Animals were sacrificed by decapitation and tissues (hypothalamus, adipose tissue depots) were immediately removed, snap frozen and stored at -80°C for further analysis. All animal experiments were approved by the Austrian Federal Government (BMWF-66.010/0010-WF/V/3b/2015) and were performed in consent with Directive 2010/63/EU on the protection of animals used for scientific purposes. (Kaineder et al., IJO, 2017, unpublished results)

4.3.2 Study Design
The study design was non-blinded and based on four groups (each N=8). Two groups received treatment (liraglutide) either intrahypothalamically (IH) or subcutaneously (SC) and two groups received placebo, aCSF for IH control and 0.9% NaCl for SC control group. Group 1: IH liraglutide; Group 2: IH control (aCSF); Group 3: SC liraglutide; Group 4: SC control (NaCl). Group 2 and group 4 (treated with placebo) served as control groups (Table 3). (Kaineder et al., IJO 2017, unpublished results).
For chronic administration, rats were continuously treated for 28 days with either 10 µg/day IH liraglutide or with 200 µg/kg/day SC liraglutide via osmotic pumps. The administered dose of IH liraglutide was chosen on its ability to significantly inhibit feeding and induce body weight loss. The dose of SC administration was chosen to minimize the transfer effect from periphery to the hypothalamus, to ensure differentiation between a central and peripheral effect of liraglutide. (Kaineder et al., IJO 2017, unpublished results).
Table 3 – Treatment and application site of four different groups. Each group was comprised of 8 rats and was treated continuously for 28 days. Stereotactic coordinates for hypothalamic application: AP – 1.7, ML 0.6, DV – 7.6 mm; AP (anterior-posterior), ML (medial-lateral), DV (dorsal-ventral), aCSF (artificial cerebrospinal fluid);

<table>
<thead>
<tr>
<th>Group number</th>
<th>Group name</th>
<th>Treatment</th>
<th>Application site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IH liraglutide</td>
<td>Liraglutide 10 µg/day</td>
<td>Hypothalamus</td>
</tr>
<tr>
<td>2</td>
<td>IH control</td>
<td>aCSF</td>
<td>Hypothalamus</td>
</tr>
<tr>
<td>3</td>
<td>SC liraglutide</td>
<td>Liraglutide 200 µg/kg/day</td>
<td>Subcutaneous</td>
</tr>
<tr>
<td>4</td>
<td>SC control</td>
<td>0.9% NaCl</td>
<td>Subcutaneous</td>
</tr>
</tbody>
</table>

4.3.3 Surgical implantation of osmotic pumps

Before implantation, rats were individually placed in an anesthesia induction chamber (Rothacher, Heitenried, Switzerland) induced with 4 vol% isoflurane (Isoflo, Esteve Farma, Carnaxide, Portugal) in 100% oxygen with a delivery rate of 5 l/min until loss of righting reflex. Rats were anesthetized using an injectable anaesthetic (0.1 ml/kg; 0.5 mg/kg Midazolam, 5 µg/kg Fentanyl, 5 mg/kg Domitor; ERWO Pharma GmbH, Hameln pharma plus GmbH, Vienna, Austria). Anesthesia was maintained with isoflurane in 100% oxygen at a flow of 1.5 l/min. For a 28 days continuous drug administration we chose the pump models 2ML4 for SC (subcutaneous) and the model 2004 for IH (intrahypothalamic) administration (ALZET Durect, Cupertino, California, USA) (Table 4). The osmotic pumps were implanted on the back of the rats slightly posterior to the scapulae. Osmotic pumps were implanted according to manufacturer’s instructions by creating a pocket at the mid-scapular region using a hemostat and inserting the filled pump in the pocket. (Kaineder et al., IJO 2017, unpublished results).
ALZET pumps work by osmotic pressure difference between the osmotic layer and the tissue environment surrounding the pump. An influx of water from the tissue environment through the semipermeable membrane is caused by the high osmolality of the osmotic layer. The flexible reservoir, which concludes the test agent, is compressed by the water entering the pump. The compression of the reservoir is predetermined and controls the delivery rate of the test agent. Figure 7: Schematic representation and working principle of ALZET osmotic pumps. Picture taken from the homepage of ALZET.

Figure 8: An ALZET osmotic pump and components of the brain cannula system assembled before implantation. The ALZET Flow Moderator is connected to the osmotic pump and the catheter tubing connects the pump with the brain cannula system. The brain cannula system is implanted to the hypothalamus. Picture taken from the homepage of ALZET.

Table 4 – Technical description of the ALZET osmotic pumps. IH – intrahypothalamic; SC-Subcutaneous;

<table>
<thead>
<tr>
<th></th>
<th>Pumping rate [µl/h]</th>
<th>Pumping duration [days]</th>
<th>Reservoir volume [µl]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Model 2004</td>
<td>0.22 ± 0.05</td>
<td>42</td>
<td>234</td>
</tr>
<tr>
<td>(IH)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Model 2ML4</td>
<td>2.55 ± 0.05</td>
<td>31</td>
<td>1997.2</td>
</tr>
<tr>
<td>(SC)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
4.3.4 Surgical implantation of intrahypothalamic cannula

Induction of anesthesia for stereotactic surgery was the same as for the implantation of osmotic pumps as described before. The head was fixed in a small animal stereotactic frame (Model 900, David Kopf Instruments, California, USA) and rats were prepared for surgery by shaving the head and disinfecting the skin with 70% ethanol. A spherical dental drill was used to drill a 1 mm hole into the skull leaving the dura intact. The dura was then punctured with fine forceps in order to create a defined opening of the meninges96. The cannula (PlasticsOne, Bilaney Consultants, Düsseldorf, Germany) was inserted slowly to a depth of 7.6 mm (intrahypothalamic) via a 1 mm hole drilled into the skull 1.7 mm lateral to the bregma and 0.6 mm from midline and fixed to the skull using four anchor screws and biocompatible dental cement (iCEM Self Adhesive; Heraeus, Hanau, Germany). After surgery, rats received analgesics and anti-inflammatory drugs for the following three days (50 mg/kg Claforan, Sanofi-Aventis GmbH, Vienna, Austria; 50 mg/ml Carprofen; Pfizer Corporation Austria GmbH, Vienna, Austria). The cannula was connected to an osmotic pump filled with liraglutide dissolved in artificial cerebrospinal fluid (aCSF; Harvard Apparatus, Germany), and the pump was implanted subcutaneously. (Kaineder et al., IJO 2017, unpublished results).

4.3.5 Assessment of body weight, adipose tissue mass and size

Body weight was continuously assessed on a precise laboratory scale (Competence CP3202S-0CE, Sartorius AG, Göttingen, Germany). After 28 days rats were sacrificed and freshly excised adipose tissue depots (inguinal WAT, epididymal WAT, interscapular BAT) were weighed on an analytical balance (M-Power AZ214, Sartorius AG, Göttingen, Germany). Epididymal (eWAT) and inguinal (iWAT) white adipose tissue and interscapular brown adipose tissue (iBAT) were isolated, fixed in 4% paraformaldehyde over night at room temperature and embedded in paraffin. Embedded tissues were cut in 5-µm-thick sections and stained with haematoxylin and eosin (H&E). Adipose tissue sections were evaluated using the Olympus BX51 microscope and representative areas from these sections were captured by using the Olympus camera 4A14690. The images were acquired with a standard X20-microscope objective lens. The imaging area was selected according to a high prevalence of adipocytes with an intact cell membrane and minimal adjacent tissues such as blood vessels, muscle and inflammatory cells. Adipocytes with unclear cell borders were excluded from analysis. Image annotation was performed manually by
using the Olympus Analysis Five Software and the mean adipocyte size was calculated for each type of adipose tissue. (Kaineder et al., IJO 2017, unpublished results).

4.3.6 Assessment of abdominal visceral and subcutaneous fat composition
Abdominal adipose tissue (AT) volumes of visceral (VAT) and subcutaneous (SAT) depots were measured with a micro-CT scanner (Siemens Inveon micro CT, Siemens Healthcare GmbH, Erlangen, Germany; energy settings: 200 mA, 80kV, 1200 ms) with Siemens Inveon Acquisition Workplace software (version 1.2.2.2) before (baseline) drug treatment and after 28 days of chronic infusion of liraglutide or placebo. Data was reconstructed using filtered back projection and algorithm of Feldkamp in Siemens Inveon Acquisition workplace. The reconstructed datasets were exported to DICOM format using Siemens Inveon Research Workplace and post processed regarding adipose tissue volumes using Materialise MIMICS v.19 (Materialise, Leuven, Belgium). We focused on the abdominal region, since scanning the abdominal adipose depots provides sufficient information to estimate total body fat and monitor site-specific changes in adiposity and reduces scanning time113. (Kaineder et al., IJO 2017, unpublished results).

4.3.7 RNA isolation, cDNA transcription and RT-qPCR
QIAzol Lysis Reagent (QIAGEN GmbH, Hilden, Germany) was used for tissue lysis. Total RNA content was isolated from homogenized adipose and hypothalamic tissue by using the RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany) including on-column DNase I treatment. RNA quantity was measured on NanoDrop (NanoDrop 2000c, ThermoFisherScientific GmbH, Vienna, Austria) and 1 µg total RNA was reversely transcribed by using the iScript advanced cDNA synthesis kit (Bio-Rad Laboratories, Vienna, Austria). Gene expression analysis via qPCR was performed using TaqMan Universal PCR Master Mix (Life Technologies, Carlsbad, California, USA) or LightCycler 480 SYBR Green I Master Mix (Roche, Vienna, Austria) according to the manufacturer's instructions on a Roche LightCycler 480 Instrument (Roche Austria, Vienna, Austria). Sequences of primers and probes are listed in Appendix. (Kaineder et al., IJO 2017, unpublished results).

4.3.8 Examination of metabolic and hormonal parameters
Plasma glucose levels were assessed by using the Accu-Check Performa system (Roche Diabetes Care Austria GmbH, Vienna, Austria). Non-esterified free fatty acids
(NEFA) were measured via the enzymatic colorimetric NEFA-HR(2) assay kit (WAKO Diagnostics, Richmond, Virginia, USA). Plasma free glycerol (FG) content was quantified colorimetrically using free glycerol reagent (Sigma Aldrich, Vienna, Austria). Plasma triacylglycerol levels (TAG) were analysed by using the Infinity Triacylglyceride Assay (ThermoScientific, Vienna, Austria). Circulating leptin, insulin, thyridiodine (T3) and thyroxine (T4) concentrations were measured with the Mesoscale Multiplex Array Elisa System (Mesoscale Diagnostics, Rockville, Maryland, USA). All measurements were performed according to the manufacturer’s instructions. (Kaineder et al., IJO 2017, unpublished results).

4.3.9 Statistical Analysis
Data are expressed as mean ± SEM compared to the corresponding control or treatment group. Shapiro-Wilk test was used to scrutinize normal distribution. Either unpaired Student two-tailed t-test or Mann-Whitney U test was used to determine statistical significance when comparing two groups. P-values were corrected for multiple testing using the Benjamini-Hochberg procedure. To evaluate homogeneity of variances we used Leven’s test and Mauchley’s test of sphericity. For repeated body weight measurements, we used two-way repeated measures mixed model ANOVA plus Bonferroni post hoc analysis. Corrected P-values <0.05 were considered statistically significant. The calculations were performed in GraphPad Prism Mac 5.0b software (La Jolla, CA, USA) and SPSS Statistics version 23 (IBM, Ehningen, Germany). Relative gene expression levels (mRNA) were analysed using the $2^{(\Delta\Delta Ct)}$ method\footnote{114}. (Kaineder et al., IJO 2017, unpublished results).

Parts of this thesis are adapted from the publication Kaineder et al. “Continuous intrahypothalamic rather than subcutaneous liraglutide administration leads to reduced body weight gain and stimulation of melanocortin system”, published 2017 in the International Journal of Obesity.
4.4 Results

4.4.1 Chronic intrahypothalamic liraglutide treatment leads to profound weight loss and adipose tissue loss

IH treatment resulted in a significant body weight loss of 4% at day 7 ($P<0.05$) and 5% at day 9 ($P<0.05$) compared to baseline. Compared to the control group (IH control), chronic IH liraglutide treatment significantly reduced body weight gain by 6% at day 7 ($P<0.05$), 8% at day 9 ($P<0.01$), 6% at day 14 and day 16 ($P<0.05$) (Figure 9A). A 3% reduction in body weight gain was maintained from day 21 to day 28 compared to IH control (Figure 9A). IH liraglutide treated rats had significantly reduced epididymal and inguinal fat mass compared to IH control ($P<0.05$) (Figure 9B). (Kaineder et al., IJO 2017, unpublished results).

![Graph A](image)

Figure 9 – Chronic intrahypothalamic liraglutide treatment leads to body weight loss and adipose tissue mass loss. (A) Body weight loss over 16 days and a reduced body weight gain from day 21 to day 28 triggered by continuous IH liraglutide treatment (IH 10 µg/day) compared to control group (IH control, aCSF). (B) Adipose tissue mass loss from eWAT (epididymal), iWAT (inguinal) white adipose tissue depots and from iBAT (interscapular) brown adipose tissue depot after 28 days of IH liraglutide treatment. Interaction $p=0.0025$, Time $p<0.0001$, Treatment $p=0.0210$. Data are presented as mean ± SEM of 7-8 animals per group. (*$p<0.05$, **$p<0.01$). IH – intrahypothalamic; SC - subcutaneous.
4.4.2 Chronic subcutaneous liraglutide treatment does not affect body weight and adipose tissue mass

Chronic subcutaneous administration of liraglutide did neither affect body weight (Figure 10A), nor did it reduce adipose tissue mass (Figure 10B). (Kaineder et al., IJO 2017, unpublished results).

Figure 10 – Chronic subcutaneous liraglutide treatment does not lead to body weight and adipose tissue mass loss. (A) No change in body weight over 28 days of SC liraglutide treatment (200 µg/kg/day) compared to corresponding control group (SC control, 0.9% NaCl). (B) No change in adipose tissue weights from eWAT, iWAT and iBAT depots after 28 days of SC liraglutide treatment. Interaction p=0.3379, Time p<0.0001, Treatment p=0.0295. Data are presented as mean ± SEM of 7-8 animals per group. IH – intrahypothalamic; SC - subcutaneous. (Kaineder et al., IJO 2017, unpublished results)
4.4.3 Chronic intrahypothalamic rather than subcutaneous liraglutide treatment leads to body weight loss and adipose tissue loss

Compared to the SC liraglutide treatment group, chronic IH liraglutide treatment induced a significant body weight loss at day 9 ($P<0.001$), at day 14 and 16 ($P<0.01$), at day 23 and 28 ($P<0.05$) (Figure 11A). IH liraglutide treatment resulted in a significant reduction of inguinal white and interscapular brown adipose tissue compared to SC liraglutide treatment ($P<0.01$) (Figure 11B). (Kaineder et al., IJO 2017, unpublished results).

![Figure 11](image_url)

Figure 11 – Chronic intrahypothalamic liraglutide treatment leads to body weight and adipose tissue loss and a reduced body weight gain. (A) Body weight loss over 16 days and a reduced body weight gain from day 21 to day 28 after chronic IH liraglutide treatment (10 µg/day) compared to SC liraglutide treatment (200 µg/kg/day). (B) Loss of adipose tissue mass from eWAT, iWAT, iBAT after 28 days of IH liraglutide versus SC liraglutide treatment. Interaction $p=0.0010$, Time $p<0.0001$, Treatment $p=0.0024$. Data are presented as mean ± SEM of 7-8 animals per group. (*$p<0.05$, **$p<0.01$, ***$p<0.001$). IH – intrahypothalamic; SC - subcutaneous. (Kaineder et al., IJO 2017, unpublished results)
4.4.4 Chronic intrahypothalamic liraglutide treatment reduces the size of brown adipocytes

Chronic IH liraglutide treatment showed a significant reduction in brown adipocyte size compared to the control group (IH control) ($P<0.05$) (Figure 12A, 12B). We found a trend towards reduced adipocyte size in eWAT (epididymal) and iWAT (inguinal) compared to control group (Figure 12A, 12B). (Kaineder et al., IJO 2017, unpublished results).

Figure 12 – Chronic intrahypothalamic liraglutide treatment leads to reduction in brown adipocyte size. (A) Adipocyte size after 28 days of IH liraglutide treatment (IH 10 µg/day). (B) Representative H&E stainings of adipose tissues (eWAT, iWAT, iBAT) 28 days after IH liraglutide injection compared to IH control; 20X magnification, scale bar = 200 µm. Data are given in mean ± SD of 7-8 animals. (*$p<0.05$). (Kaineder et al., IJO 2017, unpublished results)
4.4.5 Chronic intrahypothalamic liraglutide treatment reduces gain of visceral adipose tissue volume

After 28 days of IH liraglutide treatment we found a 10% reduction of visceral adipose tissue (VAT) compared to the control group (IH control) \((P<0.05)\) (Figure 13A). The subcutaneous adipose tissue (SAT) volume showed a trend towards reduced adipose tissue volume by IH liraglutide treatment compared to IH control (Figure 13B). Overall we observed a reduced visceral and subcutaneous adipose tissue gain from baseline to day 28 after IH liraglutide treatment. (Kaineder et al., IJO 2017, unpublished results).

Figure 13 – Chronic intrahypothalamic liraglutide treatment reduces visceral adipose tissue depot. (A) micro-CT calculated VAT volume (mm\(^3\)) at baseline (after pump initialisation) and at day 28 after IH liraglutide treatment compared to IH control. (B) micro-CT calculated SAT volume (mm\(^3\)) from baseline to day 28 after IH liraglutide treatment compared to IH control. (C) Fully segmented 3D micro-CT images (xyz) of the abdominal region VAT (red) and SAT (blue). Black/white images show transverse axial micro-CT images of rat abdomen at level L5-S1 inter-vertebral disk. VAT = visceral adipose tissue; SAT = subcutaneous adipose tissue; Data are expressed as mean \pm SEM of 7-8 animals. \(*p<0.05\). (Kaineder et al., IJO 2017, unpublished results)
4.4.6 Chronic subcutaneous liraglutide treatment does not affect adipose tissue volume

We observed no reduction of visceral and subcutaneous adipose tissue gain from baseline to day 28 after SC liraglutide treatment (Figure 14A, Figure 14B). Visceral and subcutaneous adipose tissue volumes showed a trend towards reduction by SC liraglutide treatment compared to SC control on day 28 (Figure 14A, Figure 14B). SC liraglutide treatment compared to IH liraglutide treatment showed a higher gain in visceral and subcutaneous adipose tissue.

Figure 14 - Chronic subcutaneous liraglutide treatment does not reduce adipose tissue volume. (A) micro-CT calculated VAT volume (mm3) at baseline (after pump initialisation) and at day 28 after SC liraglutide treatment compared to SC control. (B) micro-CT calculated SAT volume (mm3) from baseline to day 28 after SC liraglutide treatment compared to SC control. (C) Fully segmented 3D micro-CT images (xyz) of the abdominal region VAT (red) and SAT (blue). Black/white images show transverse axial micro-CT images of rat abdomen at level L5-S1 inter-vertebral disk. VAT = visceral adipose tissue; SAT = subcutaneous adipose tissue; Data are expressed as mean ± SEM of 7-8 animals.
4.4.7 The chronic intrahypothalamic liraglutide-induced body weight and adipose tissue mass loss is independent of thermogenesis and browning

Chronic IH liraglutide treatment did not affect expression of brown adipocyte marker *ucp1* in iBAT (Figure 19). Chronic IH liraglutide treatment did not change expression of browning, adipogenesis, lipolysis and beta-oxidation markers (*prdm16, cidea, cidec fgf21, tnfrsf9, zic1, bmp7, cebp, cebp, ppargc1a, pparg, ldlr, lpl, adrb1, cpt1a*) in eWAT, iWAT and iBAT (Figure 15, Figure 17, Figure 19). Mitochondrial cytochrome c oxidase subunit 3 (*mtco3*) in eWAT was significantly increased with IH liraglutide treatment compared to the control group (*P*<0.05) but no effect was observed on other markers for mitochondrial respiration (*cox4i1, cycs, mtco3*) (Figure 15). We observed a trend towards reduction of leptin mRNA levels in eWAT and iWAT with IH liraglutide treatment compared to the control group, whereas adiponectin was unaffected (Figure 15, Figure 17). Chronic SC liraglutide treatment did not affect expression of brown adipocyte marker *ucp1* in iBAT, and expression of browning, adipogenesis, lipolysis and beta-oxidation markers (*prdm16, cidea, cidec, fgf21, tnfrsf9, zic1, bmp7, cebp, ppargc1a, pparg, ldlr, lpl, adrb1, cpt1a*) in eWAT, iWAT and iBAT (Figure 16, Figure 18, Figure 20). The gene for the enzyme *dio* was unaffected by chronic IH liraglutide treatment compared to the IH control group (Figure 20). (Kaineder et al., IJO 2017, unpublished results).
Figure 15 – Chronic intrahypothalamic liraglutide treatment does not induce thermogenesis and browning of the eWAT. Relative mRNA levels (fold changes) in eWAT after 28 days of IH liraglutide treatment compared to control group (IH control). Rpl4 and PPla were used as reference genes. Data are given in mean ± SEM of 7-8 animals per group. (*p<0.05). (Kaineder et al., IJO 2017, unpublished results)
Figure 16 – Chronic subcutaneous liraglutide treatment does not affect browning or thermogenesis in eWAT. Relative mRNA levels (fold changes) in eWAT after 28 days of SC liraglutide treatment compared to control group (SC control). Rpl4 and PPia were used as reference genes. Data are presented as mean ± SEM of 7-8 animals per group. (Kaineder et al., IJO 2017, unpublished results)
Figure 17 - Intrahypothalamic liraglutide treatment does not induce thermogenesis and browning of the iWAT. Relative mRNA levels (fold changes) in iWAT after 28 days of IH liraglutide treatment compared to control group (IH control). Rpl4 and PPIa were used as reference genes. Data are presented as mean ± SEM of 7-8 animals per group. (Kaineder et al., IJO 2017, unpublished results)
Figure 18 – Chronic subcutaneous liraglutide treatment does not affect browning or thermogenesis in iWAT. Relative mRNA levels (fold changes) in iWAT after 28 days of SC liraglutide treatment compared to control group (SC control). Rpl4 and PPia were used as reference genes. Data are presented as mean ± SEM of 7-8 animals per group.
Figure 19 – Chronic intrahypothalamic liraglutide treatment does not induce thermogenesis and browning of the iBAT. Relative mRNA levels (fold changes) in iWAT after 28 days of IH liraglutide treatment compared to control group (IH control). *Rpl4* and *PPia* were used as reference genes. Data are presented as mean ± SEM of 7-8 animals per group. (Kaineder et al., IJO 2017, unpublished results)
Figure 20 – Chronic subcutaneous liraglutide treatment does not affect browning or thermogenesis in iBAT. Relative mRNA levels (fold changes) in iBAT after 28 days of SC liraglutide treatment compared to control group (SC control). Rpl4 and Ppia were used as reference genes. Data are presented as ± SEM of 7-8 animals per group.
4.4.8 Chronic intrahypothalamic liraglutide treatment stimulates the central melanocortin (MC4R) system

Chronic IH treatment with liraglutide led to an 18-fold induction of the hypothalamic melanocortin 4 receptor gene expression (mc4r) compared to the control group (P<0.01) (Figure 21) but no further changes were found in any genes regulating appetite and satiety in the hypothalamus (mc3r, bdnf, pomc, agrp, npy, lepr, pc1, glp1r). Expression of genes of the pituitary-thyroid axis (tsh, trh, dio2) was likewise unaffected by IH liraglutide treatment except the slight increase in tsh mRNA levels (Figure 21). Expression of markers for appetite neurons, like a-msh and sosc3 was undetectable. Expression patterns of neuronal appetite markers were undetectable in SC liraglutide treated group. (Kaineder et al., IJO 2017, unpublished results).

![Figure 21 – Chronic intrahypothalamic liraglutide treatment stimulates an 18-fold induction of mc4r levels.](image)

Relative mRNA expression levels (fold changes) of genes involved in thyroid-pituitary axis (tsh, trh, dio2) and energy homeostasis (bdnf, pomc, agrp, npy, lepr, pc1, glp1r, mc3r, mc4r) in the hypothalamus. Rplp0 was used as reference gene. Data are presented as mean ± SEM of 7-8 animals per group compared to their corresponding control group. (**p<0.01). (Kaineder et al., IJO 2017, unpublished results)
4.4.9 Chronic intrahypothalamic liraglutide treatment increases thyroxine levels

Chronic IH liraglutide treatment led to a 1.4-fold increase in circulating concentrations of the thyroid hormone thyroxine (T4) compared to the control group (IH control) ($P<0.05$) (Table 5). Neither IH liraglutide nor SC liraglutide treatment affected any circulating factor of glucose metabolism (insulin, glucose) or fatty acid metabolism (leptin, NEFA, FG, TAG) at day 28. We observed normal TSH levels for all groups at baseline, treatment day 14 and treatment day 21 compared to control groups (Table 6). (Kaineder et al., IJO 2017, unpublished results).

Table 5 – Chronic intrahypothalamic liraglutide treatment leads to increased T4 concentrations. Circulating plasma levels of markers for glucose metabolism (glucose, insulin), fatty acid metabolites (leptin, NEFA, TAG, FG) and thyroid hormones (T3, T4) at day 28 after chronic IH (10 µg/day) and SC (200 µg/kg/day) liraglutide treatment. Data are given as mean ± SEM of 7-8 animals per group. (*$p<0.05$); FG, free glycerol; NEFA, non-esterified fatty acids; TAG, triglyceride; T3, triiodothyronine; T4, thyroxine; (Kaineder et al., IJO 2017, unpublished results)

<table>
<thead>
<tr>
<th></th>
<th>IH control</th>
<th>IH liraglutide [10 µg/day]</th>
<th>SC control</th>
<th>SC liraglutide [200 µg/kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG (µmol/ml)</td>
<td>13.21 ± 2.94</td>
<td>13.43 ± 2.73</td>
<td>11.98 ± 1.54</td>
<td>11.39 ± 1.71</td>
</tr>
<tr>
<td>NEFA (µmol/ml)</td>
<td>14.67 ± 4.14</td>
<td>15.54 ± 5.4</td>
<td>15.85 ± 5.0</td>
<td>17.76 ± 5.77</td>
</tr>
<tr>
<td>TAG (µmol/l)</td>
<td>0.08 ± 0.02</td>
<td>0.08 ± 0.03</td>
<td>0.10 ± 0.03</td>
<td>0.10 ± 0.04</td>
</tr>
<tr>
<td>Leptin (ng/ml)</td>
<td>25.20 ± 14.0</td>
<td>14.96 ± 13.54</td>
<td>8.20 ± 5.74</td>
<td>8.18 ± 5.48</td>
</tr>
<tr>
<td>Insulin (ng/ml)</td>
<td>1.71 ± 0.61</td>
<td>1.23 ± 0.45</td>
<td>1.24 ± 0.57</td>
<td>1.07 ± 0.12</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>7.04 ± 0.33</td>
<td>7.29 ± 0.69</td>
<td>7.90 ± 0.63</td>
<td>6.56 ± 0.89</td>
</tr>
<tr>
<td>T3 (ng/dl)</td>
<td>24.35 ± 5.6</td>
<td>25.95 ± 7.3</td>
<td>24.99 ± 8.6</td>
<td>24.34 ± 7.8</td>
</tr>
<tr>
<td>T4 (ng/dl)</td>
<td>57.78 ± 8.2</td>
<td>80.61 ± 23.3*</td>
<td>61.0 ± 12.6</td>
<td>58.42 ± 14.8</td>
</tr>
</tbody>
</table>
Table 6 - TSH (ng/ml) levels at baseline, 14 days and 21 days after intrahypothalamic or subcutaneous liraglutide administration. We observed no changes in TSH levels neither in intrahypothalamic nor in subcutaneous treated groups. Data are given in mean ± SD. TSH – thyroid stimulating hormone; IH – intrahypothalamic, SC - subcutaneous.

<table>
<thead>
<tr>
<th></th>
<th>IH vehicle [10 µg/day]</th>
<th>IH liraglutide [10 µg/day]</th>
<th>SC vehicle [200 µg/kg/day]</th>
<th>SC liraglutide [200 µg/kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>0.81 ± 0.18</td>
<td>0.94 ± 0.26</td>
<td>1.65 ± 1.16</td>
<td>1.32 ± 0.60</td>
</tr>
<tr>
<td>Day 14</td>
<td>1.32 ± 0.44</td>
<td>1.08 ± 0.17</td>
<td>2.29 ± 2.17</td>
<td>1.04 ± 0.41</td>
</tr>
<tr>
<td>Day 21</td>
<td>1.20 ± 0.30</td>
<td>1.12 ± 0.35</td>
<td>1.75 ± 1.20</td>
<td>1.20 ± 0.31</td>
</tr>
</tbody>
</table>
5 Discussion

This study aimed to identify different effects of chronic central and peripheral liraglutide treatment on body weight. Chronic central application of liraglutide induced a significant body weight loss and overall reduction in body weight gain, which was supported by a significant loss of adipose tissue mass. Chronic central liraglutide treatment led to a reduction in brown adipocyte size and reduced gain of visceral fat. Furthermore, chronic central liraglutide treatment led to a significant activation of hypothalamic mc4r mRNA expression and a significant increase in plasma T4 concentrations.

Chronic intrahypothalamic (IH) liraglutide administration induced a significant reduction in body weight during the first 16 days of treatment. We observed a light gain in body weight after day 16 of IH liraglutide treatment, but body weight gain was still low compared to control group. At day 9 of IH liraglutide treatment the biggest loss in body weight was observed. Compared to peripheral liraglutide treatment, we found that central injection of liraglutide induced a significant body weight loss from day 9 to day 28 and a significant loss in adipose tissue mass (iWAT, iBAT) after 28 days. To our knowledge, this is the first study on chronic central liraglutide treatment continuously for 28 days in animal trials. The observed body weight regain at the end of our study (day 21 to day 28) could be caused by GLP-1 receptor desensitization (tachyphylaxis) upon continuous stimulation117 supported by the unaffected GLP-1R expression in the hypothalamus in our study after chronic central liraglutide treatment. Other physiological mechanisms such as reduced energy expenditure, increased appetite seen as an increase in ghrelin118, reduced satiety or a reduction in plasma leptin could be further explanations for the observed body weight regain119–122. We observed a trend towards reduced plasma leptin levels after chronic central liraglutide treatment, which has been suggested to increase food intake119,122. An increased food intake might explain the observed body weight regain at the end of our study upon chronic central liraglutide administration. As we investigated the chronic liraglutide effects in a healthy lean animal model without leptin resistance, the body weight regain seems to be a natural protective counter-regulatory physiological response after weight loss also seen in humans66. (Kaineder et al., IJO 2017, unpublished results).
In humans, 3 mg liraglutide causes a moderate weight loss of 7.2 kg in obese individuals with slight weight regain66,79. Our animal study did not result in any reduction in body weight gain after peripheral chronic administration of liraglutide while similar subcutaneous liraglutide treatment has led to anorectic effects and body weight loss in diet-induced obese rats on high-fat diet35. Similar studies in diet-induced obese are expected to result in a more pronounced anorectic effect73,123 compared to our study design with lean rats on normal diet. However, our primary aim was to test the chronic physiological effect of liraglutide in the hypothalamus of a healthy animal model. (Kaineder et al., IJO 2017, unpublished results).

In contrast to other studies, we did not observe any changes on body weight by peripheral liraglutide administration. Considering the total liraglutide concentration in plasma at baseline and day 28 (Appendix), we assume that the continuous subcutaneous dosing of liraglutide in our study was not effective enough to stimulate the hypothalamic GLP-1R to trigger body weight loss compared to a more effective bolus administration in other studies35,124. Moreover, the liraglutide-induced anorectic effect and body weight loss are affected by the dosing regimen63,66,124, the maximum dose of liraglutide used as obesity treatment is 3.0 mg. Such high dosing is necessary to decrease caloric intake and reduce body weight in humans. To exert anorexigenic effects in rodents, even higher dosing of liraglutide is necessary because of the shorter half-life of liraglutide in rodents80,125. (Kaineder et al., IJO 2017, unpublished results).

Combining our results on body weight development and adipose tissue mass we demonstrated that liraglutide mediates its body weight reducing effects more potently via central rather than peripheral mechanisms. (Kaineder et al., IJO 2017, unpublished results).

Shown by a recent acute study, administration of liraglutide led to increased thermogenesis in brown adipose tissue and browning of white adipose tissue through the AMP-activated protein kinase pathway in the ventromedial hypothalamus (VMH) independent of caloric intake38. In contrast, we found no significant changes in gene expressions of bona fide brown adipocyte marker ucp1, transcription factors for browning (prdm16, ppargc1a), browning enriched markers (cidea, cidec, tnfrsf9, zic1, adrb1) and browning activators (fgf21, bmp7)126–130. Therefore, our study does not support the involvement of increased thermogenic or browning capability in liraglutide-induced weight loss but this could be due to differences in the delivery site
and duration of treatment38. Several animal and human studies have attributed the weight reducing effects mediated by liraglutide to caloric intake rather than to increased energy expenditure35,60,72,131. (Kaineder et al., IJO 2017, unpublished results).

Similar to the extensive reduction in body weight gain, the chronic central liraglutide treatment in our study led to a sustained reduction of eWAT and iWAT mass as well as a reduced gain in visceral adipose tissue volume, but we found no such effect after chronic peripheral liraglutide treatment. Subcutaneous adipose tissue volume was slightly increased on day 28 compared to baseline after central liraglutide treatment, but less increased than in the control group. We observed a trend towards reduced size of white adipocytes in eWAT and iWAT after central liraglutide administration. iBAT mass was unaffected while iBAT adipocytes were significantly reduced in size after chronic central liraglutide treatment. We hypothesize that a reduced food intake is responsible for the observed reduction in adipocyte size and adipose tissue mass since we did not observe any changes in fatty acid metabolism after central liraglutide treatment. A previous study, where diet-induced obese mice where treated with liraglutide for 14 days has attributed the observed fat mass reduction to central GLP-1 receptor signaling60. This supports our assumption that the decline in visceral fat depot is mainly mediated by hypothalamic neural mechanisms as indicated by the clear difference between the effects of central and peripheral liraglutide administration found in our study. (Kaineder et al., IJO 2017, unpublished results).

As expected, peripheral and central liraglutide treatment left hormonal parameters for glucose metabolism and fatty acid metabolism largely unaffected, as we investigated the liraglutide effect on healthy lean animals. But we observed a significant increase in circulating T4 concentrations without changes in TSH levels after chronic central liraglutide treatment. However, we can exclude that changes in the thyroxine binding globulin are responsible (TBG) for the increase in T4 levels, as it was reported that rats lack TBG134,135. In humans, weight loss and maintenance of body weight have been associated with increased peripheral conversion of T4 to the bioactive enantiomer reverse T3121,132 but we found no changes in the expression of the enzyme type II iodothyronine deiodinase (DIO2) in iBAT which is essential for the intracellular conversion of T4 to T3133. Although we found an increase in T4 levels,
we did not observe any changes in the mRNA expression of *trh* and *tsh* in the hypothalamus. (Kaineder et al., IJO 2017, unpublished results).

Moreover, we examined the effect of chronic central liraglutide administration on neuronal populations known to regulate caloric intake and energy homeostasis. Contrary to other studies, we observed no change in the mRNA expression of hypothalamic orexigenic (*agrp/hpy*) or anorexigenic (*pomc/a-msh*) neurons but we found a significant 18-fold induction of *mc4r* mRNA in the hypothalamus after chronic central liraglutide administration. These results indicate an alternative pathway for liraglutide to activate the anorectic MC4R system, besides the previously described POMC/CART produced melanocyte-stimulating hormone α-MSH signalling in the hypothalamus\(^{136-138}\). Also the previously identified downstream of the MC4R signalling, the neurotrophin brain derived neurotrophic factor (BDNF) was unaffected by chronic liraglutide stimulation, which again indicates an alternative signalling mechanism for liraglutide to stimulate the melanocortin system\(^{139}\). To our knowledge, we show for the first time that continuous, chronic liraglutide administration in the hypothalamus leads to a significant activation of the MC4R. Recently, a 5-day combination therapy including the MC4R agonist RM-493 and liraglutide in diet-induced obese mice showed improved body weight, fat mass reduction and a minimized receptor desensitization compared to monotherapy\(^{140}\). There is also evidence that the melanocortin signalling is involved in the brain’s reward system (amygdala)\(^{141}\), which was previously reported as high-fat fed or candy fed rats prefer low-fat or chow diet after administration of MC4R agonists (MTII)\(^{142,125}\). (Kaineder et al., IJO 2017, unpublished results).

We hypothesize that liraglutide possibly modulates the activity of dopamine producing neurons and their neuronal projections to regions involved in rewarding processes underlying appetite. Therefore it would be interesting to further investigate the role of liraglutide in combination with the MC4R agonist on the dopamine driven reward system.
CHAPTER 3

The pharmacological effect of acute liraglutide treatment in the hypothalamus on energy homeostasis
6 The pharmacological effect of acute liraglutide treatment on energy homeostasis

6.1 Abstract
Liraglutide, a long-acting GLP-1R agonist stimulates satiety, which leads to reduced caloric intake and body weight loss. Acute studies have shown that liraglutide exerts differential effects on energy balance when administered to different sites in the hypothalamus. The underlying mechanisms that mediate the body weight loss elicited by central and acute liraglutide are still not entirely clear. We aimed to assess the role of acute (24 h) liraglutide administration in the hypothalamus on body weight and whether the melanocortin system or thermogenesis is activated. 16 healthy lean Sprague Dawley rats were separated in treatment (IH liraglutide) and control group (IH control) and treated either with a single dose of liraglutide (10 µg) or placebo (aCSF). We analysed the genetic expression of markers for browning, thermogenic, and adipocyte differentiation in various adipose tissue depots. mRNA signature of hypothalamic neurons, which regulate appetite were analysed by qPCR. We measured parameters in plasma for glucose and fat metabolism. Acute central liraglutide treatment did not reduce body weight. Metabolic profiles were unaffected by acute central liraglutide treatment. We did not observe any effects on the melanocortin system.

6.2 Aim
In combination to the chronic effect of liraglutide on body weight and adipose tissue composition, an acute study with central liraglutide treatment (24 h) should reveal whether a loss of body weight and adipose tissue mass as well as the activation of the central melanocortin system are also an early response to liraglutide treatment.

6.3 Introduction
We showed that liraglutide exerts its chronic anorectic effects more potently through GLP-1 receptors in the brain rather than via peripheral GLP-1R. A recent study has shown that a single central injection of liraglutide decreased caloric intake and body weight and increased energy expenditure after 24 h and this effect remitted after 48 hours. In addition the authors observed higher temperatures in the brown
adipose tissue depot and increased browning and thermogenic capability of white and brown adipocytes after 24 hours. To elucidate the hypothalamic area(s) specific for these energy homeostatic effects of liraglutide Beiroa et al. injected a single dose of liraglutide in hypothalamic nuclei, known to play a major role in appetite regulation, such as the PVN, DMH, ARC, LHA, and VMH. Liraglutide exerts its body weight and food intake reducing effects via the ARC, the PVN and the LHA without influencing energy expenditure in terms of adipose tissue browning and thermogenesis. An acute stimulation of the GLP-1R with centrally injected liraglutide in the VMH induces thermogenesis of the brown adipose tissue and browning of white adipocytes via activation of the AMPK pathway. ICV administration of liraglutide dose-dependently reduces food intake and body weight after 24 hours in fasted rodents. In contrast, it was reported that acute liraglutide administration causes a modest reduction in caloric intake at 4 hours but not at 24 hours in chow-fed mice. The inconsistency among studies needs to be clarified by further elucidating the acute effect of liraglutide and other long-acting GLP-1R agonists on central energy regulation.
6.4 Research design and methods

6.4.1 Animal models
Male Sprague Dawley (S.D.) rats (12–15 weeks old, 400–450 g; Charles River Laboratories) were housed under conditions of controlled temperature (23°C) and illumination (12-h light/dark cycle). Rats were allowed ad libitum access to water and standard laboratory chow. Animals were sacrificed by decapitation and tissue samples (hypothalamus, adipose tissues) were removed and immediately frozen in liquid nitrogen, and stored at -80°C until analysis. All animal experiments were approved by the Austrian Federal Government (BMWF-66.010/0010-WF/V/3b/2015) and were performed in consent with Directive 2010/63/EU on the protection of animals used for scientific purposes. (Kaineder et al., IJO 2017, unpublished results).

6.4.2 Study design
16 male Sprague Dawley rats were assigned to one of two groups according to their body weight (each group N=8) (Table 7). Liraglutide (IH liraglutide; 10 µg per animal) or aCSF (IH control) were injected directly into the hypothalamus (AP – 1.7, ML 0.6, DV – 7.6 mm) via syringe (5 µl, Hamilton, Bonaduz, Switzerland).

<table>
<thead>
<tr>
<th>Group number</th>
<th>Group name</th>
<th>Treatment</th>
<th>Application site</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>IH liraglutide</td>
<td>Liraglutide 10 µg/rat</td>
<td>Hypothalamus</td>
</tr>
<tr>
<td>2</td>
<td>IH control</td>
<td>aCSF</td>
<td>Hypothalamus</td>
</tr>
</tbody>
</table>

6.4.3 Surgical implantation of intrahypothalamic cannula
Before implantation, rats were individually placed in an anesthesia induction chamber (Rothacher, Heitenried, Switzerland) induced with 4 vol% isoflurane (Isoflo, Esteve Farma, Carnaxide, Portugal) in 100% oxygen with a delivery rate of 5 l/min until loss
of righting reflex. Rats were anesthetized using an injectable anesthetic (0.1 ml/kg; 0.5 mg/kg Midazolam, 5 µg/kg Fentanyl, 5 mg/kg Domitor; ERWO Pharma GmbH, Hameln Pharma plus GmbH, Vienna, Austria). Anesthesia was maintained with isoflurane in 100% oxygen at a flow of 1.5 l/min. The head was fixed in a small animal stereotactic frame (Model 900, David Kopf Instruments, California, USA) and rats were prepared for surgery by shaving the head and disinfecting the skin with 70% ethanol. A spherical dental drill was used to drill a 1 mm hole into the skull leaving the dura intact. The dura was then punctured with fine forceps in order to create a defined opening of the meninges. The cannula (PlasticsOne, Bilaney Consultants, Düsseldorf, Germany) was inserted slowly to a depth of 7.6 mm (intrahypothalamically) via a 1 mm hole drilled into the skull 1.7 mm lateral to the bregma and 0.6 mm from midline and fixed to the skull using four anchor screws and biocompatible dental cement (iCEM Self Adhesive; Heraeus, Hanau, Germany). After surgery, rats received analgesics and anti-inflammatory drugs once (50 mg/kg Claforan, Sanofi-Aventis GmbH, Vienna, Austria; 50 mg/ml Carprofen; Pfizer Corporation Austria GmbH, Vienna, Austria). (Kaineder et al., IJO 2017, unpublished results).

6.4.4 Assessment of body weight and adipose tissue mass
Body weight was continuously assessed on a precise laboratory scale (Competence CP3202S-0CE, Sartorius AG, Göttingen, Germany). After 24 hours rats were sacrificed and freshly excised adipose tissue depots (inguinal WAT, epididymal WAT, interscapular BAT) were weighed on an analytical balance (M-Power AZ214, Sartorius AG, Göttingen, Germany). Epididymal (eWAT) and inguinal (iWAT) white adipose tissue and interscapular brown adipose tissue (iBAT) were isolated, fixed in 4% paraformaldehyde over night at room temperature and embedded in paraffin. Embedded tissues were cut in 5-µm-thick sections and stained with haematoxylin and eosin (H&E). (Kaineder et al., IJO 2017, unpublished results).

6.4.5 RNA isolation, cDNA transcription and RT-qPCR
QIAzol Lysis Reagent (QIAGEN GmbH, Hilden, Germany) was used for tissue lysis. Total RNA content was isolated from homogenized adipose and hypothalamic tissue by using the RNeasy Mini Kit (QIAGEN GmbH, Hilden, Germany) including on-column DNase I treatment. RNA quantity was measured on NanoDrop (NanoDrop 2000c, ThermoFisherScientific GmbH, Vienna, Austria) and 1 µg total RNA was
reversely transcribed by using the iScript advanced cDNA synthesis kit (Bio-Rad Laboratories, Vienna, Austria). Gene expression analysis via qPCR was performed using TaqMan Universal PCR Master Mix (Life Technologies, Carlsbad, California, USA) or LightCycler 480 SYBR Green I Master Mix (Roche, Vienna, Austria) according to the manufacturer’s instructions on a Roche LightCycler 480 Instrument (Roche Austria, Vienna, Austria). Sequences of primers and probes are listed in the Appendix. (Kaineder et al., IJO 2017, unpublished results).

6.4.6 Examination of metabolic and hormonal parameters
Plasma glucose levels were measured by using the Accu-Check Performa system (Roche Diabetes Care Austria GmbH, Vienna, Austria). Non-esterified free fatty acids (NEFA) were measured via the enzymatic colorimetric NEFA-HR(2) assay kit (WAKO Diagnostics, Richmond, Virginia, USA). Plasma free glycerol (FG) content was quantified colorimetrically using free glycerol reagent (Sigma Aldrich, Vienna, Austria). Plasma triglyceride levels (TAG) were analysed by using the Infinity Triglycerides Assay (ThermoScientific, Vienna, Austria). All measurements were performed according to the manufacturer’s instructions. (Kaineder et al., IJO 2017, unpublished results).

6.4.7 Statistical Analysis
Data are expressed as mean ± SEM compared to the corresponding control. Shapiro-Wilk test was used to scrutinize normality of the data. Either unpaired two-tailed Student t-test or Mann-Whitney U test were used to determine statistical significance when comparing two groups. For repeated body weight measurements, we used two-way repeated measures ANOVA. P-values <0.05 were considered statistically significant. The calculations were performed in GraphPad Prism Mac 5.0b software (La Jolla, CA, USA). Relative gene expression levels (mRNA) were analysed using the $2^{(-\Delta\Delta Ct)}$ method114.
6.5 Results

6.5.1 Acute intrahypothalamic liraglutide treatment does not affect body weight
We observed no change in body weight 24 hours after IH liraglutide treatment (10 µg) neither compared to baseline nor compared to control group (Figure 22). (Kaineder et al., IJO 2017, unpublished results).

![Body weight change 24h [%]](image)

Figure 22 – Acute intrahypothalamic liraglutide treatment does not lead to body weight loss. Body weight at baseline (before treatment) and 24 hours after IH liraglutide treatment (10 µg) compared to IH control. Interaction \(p=0.1724 \), Time \(p=0.0207 \), Treatment \(p=0.1724 \). Results are indicated as mean ± SEM, 7-8 animals per group. IH – intrahypothalamic. (Kaineder et al., IJO 2017, unpublished results)
6.5.2 Acute liraglutide treatment does not reduce adipose tissue mass

We observed no change in weight of epididymal, inguinal white and interscapular brown adipose tissue 24 hours after IH liraglutide treatment compared to control group (Figure 23). (Kaineder et al., IJO 2017, unpublished results).

![Adipose tissue mass comparison](image)

Figure 23 – Acute liraglutide treatment does not lead to adipose tissue weight loss. Adipose tissue mass of eWAT, iWAT, iBAT 24 hours after IH liraglutide treatment (10 µg) compared to control group. Data are represented as mean ± SEM of 7-8 animals per group. IH – intrahypothalamic. (Kaineder et al., IJO 2017, unpublished results)
6.5.3 Acute intrahypothalamic liraglutide treatment does not affect expression of markers for thermogenesis and adipose tissue morphology

Acute IH liraglutide treatment did not affect expression of brown adipocyte marker (*ucp3*), and expression of browning and adipogenesis markers (*prdm16, cidea, cebpa, fgf21*) in iWAT and eWAT compared to control group (Figure 24 and Figure 25). The brown adipocyte marker *ucp1* was undetectable in iWAT. Immunohistochemical stainings of eWAT, iWAT, and iBAT did not show morphological differences after 24 hours central liraglutide treatment (Figure 24, 25, 26). The morphology of inguinal and epididymal white adipose tissue as well as interscapular brown adipose tissue was unaffected after IH liraglutide treatment, which is indicated by H&E stainings. (Kaineder et al., IJO 2017, unpublished results).

Figure 24 – Acute liraglutide treatment does not affect thermogenesis and browning in iWAT. Relative mRNA levels (fold changes) in iWAT 24 hours after IH liraglutide treatment compared to control group (IH control). *Rpl4* and *Ppia* were used as reference genes. Scale bar = 10X magnification. Data are given in mean ± SEM of 7-8 animals per group.
Figure 25 - Acute liraglutide treatment does not affect thermogenesis and browning in eWAT. Relative mRNA levels (fold changes) in eWAT 24 hours after IH liraglutide treatment compared to control group (IH control). *Rpl4* and *Ppia* were used as reference genes. Scale bar = 10X magnification. Data are given in mean ± SEM of 7-8 animals per group.

Acute IH liraglutide treatment did not affect expression of brown adipocyte markers (*ucp3, ucp1*), and expression of browning and adipogenesis markers (*prdm16, cidea, fgf21, adrb1*) in iBAT compared to control group (Figure 26). (Kaineder et al., IJO 2017, unpublished results).

Figure 26 – Acute liraglutide treatment does not affect thermogenesis and browning in iBAT. Relative mRNA levels (fold changes) in iBAT 24 hours after IH liraglutide treatment compared to control group (IH control).
Rpl4 and PPlα were used as reference genes. Scale bar = 10X magnification. Data are given in mean ± SEM of 7-8 animals per group.
6.5.4 Acute intrahypothalamic liraglutide treatment does not affect the regulation of hypothalamic appetite neurons

Acute IH treatment with liraglutide led to unchanged expression of melanocortin 4 receptor gene (*mc4r*) compared to the control group (Figure 27). We did not observe any changes to expression level of the orexigenic neuropeptide *npy* and anorexigenic neuropeptide *pomc* (Figure 27). mRNA expressions of *glp1r*, *agrp* and *lepr* were undetectable in the hypothalamus after 24 hours liraglutide administration. (Kaineder et al., IJO 2017, unpublished results).

![Diagram](image)

Figure 27 - Acute liraglutide treatment does not trigger appetite neurons in the hypothalamus. Relative hypothalamic mRNA expression levels (fold changes) 24 hours after IH liraglutide treatment. *Rplp0* was used as reference gene. Data are given as mean ± SEM of 7-8 animals per group compared to their corresponding control group. (Kaineder et al., IJO 2017, unpublished results)
6.5.5 Acute intrahypothalamic liraglutide treatment does not affect glucose and fatty acid metabolite levels

We observed no changes in plasma glucose levels and also not in plasma levels of fatty acid metabolites (FG, NEFA, TAG) 24 hours after IH liraglutide treatment (Table 8). (Kaineder et al., IJO 2017, unpublished results).

Table 8 – Acute liraglutide treatment does not affect adipose markers and also not glucose concentrations. Circulating plasma levels of glucose (glucose, insulin), of fatty acid metabolites (NEFA, TAG, FG) 24 hours after IH (10 µg) liraglutide treatment. Data are given as mean ± SEM of 7-8 animals per group. FG, free glycerol; NEFA, non-esterified fatty acids; TAG, triglyceride; (Kaineder et al., IJO 2017, unpublished results)

<table>
<thead>
<tr>
<th></th>
<th>IH control</th>
<th>IH liraglutide [10 µg]</th>
</tr>
</thead>
<tbody>
<tr>
<td>FG (µmol/ml)</td>
<td>22.05 ± 2.40</td>
<td>23.80 ± 6.26</td>
</tr>
<tr>
<td>NEFA (µmol/ml)</td>
<td>33.96 ± 2.91</td>
<td>54.46 ± 11.21</td>
</tr>
<tr>
<td>TAG (mmol/l)</td>
<td>4.15 ± 0.29</td>
<td>3.50 ± 0.28</td>
</tr>
<tr>
<td>Glucose (mmol/l)</td>
<td>7.98 ± 0.22</td>
<td>8.06 ± 0.22</td>
</tr>
</tbody>
</table>
6.6 Discussion

This study aimed to investigate the acute effect of liraglutide on body weight and the central melanocortin system (POMC/MC4R). Central (IH) liraglutide treatment did not induce body weight loss and no change in adipose tissue mass after 24 hours. Expression patterns of browning and thermogenic markers in adipose tissues were unaffected by central liraglutide administration. Similar, mRNA expression of markers for appetite neurons in the hypothalamus was unchanged after acute central liraglutide treatment. In addition glucose and fatty acid metabolism were unaffected by acute central liraglutide treatment.

In contrast to chronic central liraglutide treatment, acute central liraglutide administration did not trigger a reduction in body weight and adipose tissue weight in our study. A recent acute study observed a body weight loss after liraglutide injection after 24 hours, but this effect remitted after 48 hours\(^\text{38}\). It was shown that acute liraglutide administration causes a modest reduction in caloric intake and body weight loss at 4 hours but not at 24 hours\(^\text{60}\).

Similar to our data for chronic liraglutide administration, mRNA expression of browning and thermogenic markers (cidea, cebpa, fgf21, prdm16, ucp1, ucp3, adrb3) in interscapular brown adipose tissue (iBAT), and inguinal white adipose tissue (iWAT) were largely unaffected by central acute liraglutide treatment. In contrast a recent acute study associated the administration of liraglutide with increased thermogenesis in brown adipose tissue and browning of white adipose tissue through the AMP-activated protein kinase pathway in the ventromedial hypothalamus (VMH)\(^\text{38}\). Our study does not support the involvement of increased thermogenic or browning capability in acute liraglutide treatment but this could be due to differences in delivery site (IH vs. VMH) and differences in dosing\(^\text{38}\).

We observed no change in mRNA expression of markers for anorexigenic (pomc, mc4r) and orexigenic (npy) neurons by acute central liraglutide injection. This supports our data on body weight, adipose tissue weight and energy expenditure (in terms of browning and thermogenesis).
7 Conclusion

To summarise my PhD thesis, I want to highlight the most important findings from the previous 3 chapters.

In general, we examined the chronic and acute pharmacological effects of the GLP-1 receptor agonist liraglutide on energy homeostasis in the hypothalamus. This was accomplished by establishing a drug delivery system reliable for chronically targeting the hypothalamus without causing severe tissue damage.

Our first study showed that PEEK performed best of all 3 tested materials for focal drug delivery system to the hypothalamus because it did not influence body weight development and was biocompatible with the surrounding brain areas. We observed no severe tissue damage caused by the cannula and were able to focally deliver sodium fluorescein to the hypothalamus. These results built a solid basis for further investigations on the chronic and acute pharmacological effect of liraglutide treatment on energy homeostasis in the hypothalamus.

Considering the results from our second study about continuous chronic intrahypothalamic liraglutide treatment on energy homeostasis we conclude that central liraglutide treatment rather than peripheral liraglutide treatment leads to reduction of body weight and adipose tissue weight. In addition, the tremendous activation of the anorectic MC4R shows that central chronic liraglutide is a potent regulator of energy homeostasis and that there is an alternative pathway for liraglutide to stimulate the melanocortin system other than POMC/α-MSH.

Our third study aimed to clarify whether the observed anorectic effect of liraglutide is also an early response, and if thermogenesis and browning of adipose tissue and the activation of the melanocortin system are involved. To our surprise and contrary to other acute studies we could not observe any changes on body weight or changes to mRNA signature of markers for thermogenesis, browning and appetite regulating neurons after acute central liraglutide treatment. We conclude that the different delivery sites of liraglutide in the hypothalamus mainly contribute to the observed inconsistencies among studies.
8 Future perspective

Future studies will further investigate the chronic effect of liraglutide on energy homeostasis, by evaluating the contribution of caloric intake and energy expenditure to the observed body weight loss. First we will perform a dose-response study, thereby elucidating the threshold dose of central and peripheral liraglutide for body weight loss. We will use our continuous focal delivery technique to investigate the chronic central effects of liraglutide in diet induced obese rats. We want to identify novel anorectic targets in the hypothalamus triggering the melanocortin system and its downstream system. This can help to develop safe low-dose combination therapies to reduce side effects and improve the chronic weight management and metabolic control.

Table 9 – Future projects. cOFM – cerebral open flow microperfusion; DIO – diet induced obese; PK – pharmacokinetics; PD – pharmacodynamics; EE – energy expenditure; FI – food intake;

<table>
<thead>
<tr>
<th>Future projects</th>
<th>Rat model</th>
</tr>
</thead>
<tbody>
<tr>
<td>cOFM + osmotic pumps</td>
<td>In vitro</td>
</tr>
<tr>
<td>PK/PD Studies – Appearance rate in CSF of long-acting GLP-1R agonists (IV; SC)</td>
<td>DIO</td>
</tr>
<tr>
<td>IH & SC liraglutide action on EE/FI:</td>
<td>DIO</td>
</tr>
<tr>
<td>- Liraglutide concentration (CSF & Plasma)</td>
<td></td>
</tr>
<tr>
<td>- Neurotransmitter/Metabolomics profiling(CSF)</td>
<td></td>
</tr>
<tr>
<td>- FA/glucose metabolites (plasma)</td>
<td></td>
</tr>
<tr>
<td>- µCT/adipocyte size/adipose tissue mass</td>
<td></td>
</tr>
<tr>
<td>- FI/EE</td>
<td></td>
</tr>
<tr>
<td>- Gene expression profile (hypothalamus/adipose tissue)</td>
<td></td>
</tr>
<tr>
<td>Target homeostatic brain regions (hypo nuclei) + liraglutide:</td>
<td>DIO</td>
</tr>
<tr>
<td>- Identify downstream targets of MC4R</td>
<td></td>
</tr>
<tr>
<td>Target non-homeostatic brain regions (thalamus, frontal cortex, NAc) + liraglutide:</td>
<td>DIO</td>
</tr>
<tr>
<td>- Learning/Memory/Motivation → Reward</td>
<td></td>
</tr>
</tbody>
</table>
Bibliography

12. Morton GJ, Meek TH, Schwartz MW. Neurobiology of food intake in health and

76. Larsen PJ, Tang-Christensen M, Jessop DS. Central administration of

86. Marchalant Y, Rosi S, Wenk GL. Anti-inflammatory property of the cannabinoid

98

123. Alhadeff AL, Rupprecht LE, Hayes MR. GLP-1 neurons in the nucleus of the solitary tract project directly to the ventral tegmental area and nucleus accumbens to control for food intake. *Endocrinology* 2012;153:647–58.

9 Appendix

9.1 SYBR and TaqMan primer sequences used for RT-PCR analysis

The primers were used to analyse thermogenic and browning gene expression patterns in the epididymal, inguinal white and interscapular brown adipose tissue and for assessment of mRNA levels of appetite regulators in the hypothalamus. (Kaineder et al., IJO 2017, unpublished results).

Table 10- Primer sequences designed by using NCBI Blast (Standard Nucleotide BLAST); all self-designed primers were tested for performance by agarose gel electrophoresis.

<table>
<thead>
<tr>
<th>Oligo name</th>
<th>5’3’ Primer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rplp0</td>
<td>FW AAGCAAAGGAAGAGTCGGAGG
RV TGCAAATGGATCGAGCAAG</td>
</tr>
<tr>
<td>B2m</td>
<td>FW GTGCTTAGCAGCCTACGTCA
RV TGCAAATGGATCGAGCAAG</td>
</tr>
<tr>
<td>Mc4r</td>
<td>FW CGGGTAGGCAGCAGCCACAGCAGCAAG
RV TGCAAATGGATCGAGCAAG</td>
</tr>
<tr>
<td>Mc3r</td>
<td>FW TTATCCCAGCGCTGCTCAACC
RV CATCAGACTGACGATGCCCA</td>
</tr>
<tr>
<td>Pc1</td>
<td>FW AGTAAAGCAACCGAGCCAGCAG
RV CTGAACTGACGATGCCCAAG</td>
</tr>
<tr>
<td>Pomc</td>
<td>FW GACCTACCCACGGAAAGCAACGAAC
RV TGACCCATGCGTACCTCCAG</td>
</tr>
<tr>
<td>Agrp</td>
<td>FW AGGAAGTAGTCAGTGTAGG
RV GGACACAGCAGTACCAATT</td>
</tr>
<tr>
<td>aMsh</td>
<td>FW GCGATCTAGAACCACGACTG
RV GAGGCTACAGTACCATGG</td>
</tr>
<tr>
<td>Socs3</td>
<td>FW AGAACCCTAGCAGCAGCAGCAG
RV GGTTCCGTCGTTGGTAAAGA</td>
</tr>
<tr>
<td>Lepr</td>
<td>FW CCTGCTGGAGTCACCCACAC
RV GCAGGACAGTTCACCTTTG</td>
</tr>
<tr>
<td>Trh</td>
<td>FW ACTCCAGCTACGATCAGTTGG
RV AGGGTGAAAGATCAAGCCAGA</td>
</tr>
<tr>
<td>Oligo name</td>
<td>5’3’ Primer – TaqMan probes</td>
</tr>
<tr>
<td>------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Ppia</td>
<td>Rn00690933_m1</td>
</tr>
<tr>
<td>Rpl4</td>
<td>Rn00821091_g1</td>
</tr>
<tr>
<td>Hprt</td>
<td>Rn01527840_m1</td>
</tr>
<tr>
<td>Ucp1</td>
<td>Rn00562126_m1</td>
</tr>
<tr>
<td>Ucp3</td>
<td>Rn00565874_m1</td>
</tr>
<tr>
<td>Cidea</td>
<td>Rn04181355_m1</td>
</tr>
<tr>
<td>Cidec</td>
<td>Rn01421167_m1</td>
</tr>
<tr>
<td>Fgf21</td>
<td>Rn00590706_m1</td>
</tr>
<tr>
<td>Cebpa</td>
<td>Rn00560963_s1</td>
</tr>
<tr>
<td>Cebpb</td>
<td>Rn00824635_s1</td>
</tr>
<tr>
<td>Adrß1</td>
<td>Rn00824536_s1</td>
</tr>
<tr>
<td>Ppargc1α</td>
<td>Rn00580241_m1</td>
</tr>
<tr>
<td>Pparγ</td>
<td>Rn00440945_m1</td>
</tr>
<tr>
<td>Adiponectin</td>
<td>Rn00595250_m1</td>
</tr>
<tr>
<td>Gene</td>
<td>Transcript ID</td>
</tr>
<tr>
<td>-------</td>
<td>---------------</td>
</tr>
<tr>
<td>Leptin</td>
<td>Rn00565158_m1</td>
</tr>
<tr>
<td>Prdm16</td>
<td>Rn01516224_m1</td>
</tr>
<tr>
<td>Zic1</td>
<td>Rn00575376_m1</td>
</tr>
<tr>
<td>Bmp7</td>
<td>Rn01528889_m1</td>
</tr>
<tr>
<td>Mtco3</td>
<td>Rn03296820_s1</td>
</tr>
<tr>
<td>Ldlr</td>
<td>Rn00598442_m1</td>
</tr>
<tr>
<td>Lpl</td>
<td>Rn00561482_m1</td>
</tr>
<tr>
<td>Cox4i1</td>
<td>Rn00665001_g1</td>
</tr>
<tr>
<td>Cpt1a</td>
<td>Rn00580702_m1</td>
</tr>
<tr>
<td>Cycs</td>
<td>Rn01410227_g1</td>
</tr>
<tr>
<td>Acacb</td>
<td>Rn00588290_m1</td>
</tr>
</tbody>
</table>

9.2 Total liraglutide concentrations in plasma

Table 11 - Plasma concentration of liraglutide in SC treatment group. Total liraglutide concentration at baseline and day 28 is shown from four animals chosen on sample availability. Data is given as mean ± SD in pmol/l.

<table>
<thead>
<tr>
<th></th>
<th>SC liraglutide [200 µg/kg/day]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline</td>
<td>1785 ± 1054 pmol/l</td>
</tr>
<tr>
<td>Day 28</td>
<td>2000 ± 975 pmol/l</td>
</tr>
</tbody>
</table>

105