Dissertation

Development, Characterization and Application of a genetically encoded fluorescent sensor for quantifying ATP Dynamics within the Endoplasmic Reticulum

submitted by
Neelanjan Vishnu

for the Academic Degree of
Doctor of Philosophy
(PhD)

at the
Medical University of Graz
Institute of Molecular Biology and Biochemistry

under the supervision of
Univ.-Prof. Dr. Wolfgang F. GRAIER

2014
This thesis is dedicated to my beloved father

Late Mr. Deepak Kumar Vishnu
I express my sincere gratitude and deep regards to my supervisor Professor Wolfgang Graier, Chair, Institute of Molecular Biology and Biochemistry, Medical University of Graz for his suggestions, constant encouragement, support, constructive criticism and guidance during my research training.

I sincerely thank Dr. Roland Malli, Institute of Molecular Biology and Biochemistry, Medical University of Graz for providing his time, mentorship, expertise regarding scientific hypothesis generation, experimental planning, data analysis and development of a scientific project.

Deep regards to Dr. Markus Waldeck- Weiermair Institute of Molecular Biology and Biochemistry, Medical University of Graz for training me in advanced Molecular Biology techniques and for constant support during my thesis.

I sincerely acknowledge Prof. Marek Michalak, Department of Biochemistry, Faculty of Medicine & Dentistry, University of Alberta, Canada and Prof. Miguel Andrade, Computational Biology and Data Mining group, Max Delbrück Center for Molecular Medicine, Germany for their guidance, time and support in completion of this thesis.

Acknowledgements are due to Dr. Rene Rost, Dr. Jadoon Khan and Dr. Felix Karsten for their time for fruitful discussions and experimental support which helped me in completion of my work.

I wish to acknowledge my fellow co researchers Ms. Claire Jean-Quartier, Ms. Corina Madreiter, Ms. Warisara Parichatikanond, Ms. Christiane Klec, Dr. Rizwan Alam, Dr. Sonja Barth, Dr. Alexander Bondarenko and Ms. Sandra Blass for their help and moral support during my PhD research.

I gratefully acknowledge the financial help by Austrian Science Fund (FWF) and Doctoral College in Metabolic and Cardiovascular Disease (DKMCD) for their support for my development as a well-rounded scientist. I want to especially thank our PhD program administrator Mrs Karin Osibow for her help and guidance throughout my research tenure.

No words are enough to express my heartfelt gratitude to my mother Mrs. Leena Vishnu and brother Mr. Devashish Vishnu for their emotional support and inspiration.

Finally I want to thank my wife Dr. Arkamitra Vishnu for her constant encouragement and technical support throughout this challenging endeavor.

Neelanjan Vishnu
Graz, Austria
# 1. INTRODUCTION

1.1. Functions of the Endoplasmic Reticulum  
1.1.1. Calcium (Ca^{2+}) in the Endoplasmic Reticulum  
1.1.2. Connection between ER Ca^{2+} storage and protein folding  
1.1.3. ATP on and in the Endoplasmic Reticulum  
1.1.4. Cellular ATP generation by Glycolysis and OXPHOS in relation to ER functioning  
1.2. AMP activated protein kinase and autophagy  
1.3. Endoplasmic reticulum ATP transporters and their regulators  
1.4. Methods for measuring ATP levels in the cell  
1.5. Fluorescent proteins  
1.5.1. Different types of fluorescent protein  
1.5.2. Applications of Fluorescent Proteins  
1.6. Genetically encoded fluorescent biosensors  
1.6.1. FRET based genetically encoded biosensors  
1.6.2. Basic Principle of FRET based sensors  
1.6.3. Genetically encoded Biosensors for measurement of ATP in the ER and other cellular compartments  
1.7. Aims and Objective  
1.7.1. Design of genetically encoded FRET based fluorescent ATP biosensor targeted into the lumen of Endoplasmic reticulum  
1.7.2. Study of correlation between ATP changes and calcium dynamics in Endoplasmic reticulum
1.7.3. Investigating the role of AMP dependent protein kinase (AMPK) and Autophagy on Endoplasmic reticulum ATP dynamics

1.7.4. Identification of putative regulators of ER- ATP transporter complex

2. MATERIALS AND METHODS

2.1. Construction of ER-targeted ATP probes
2.2. Cell culture and transfection
2.3. ATP and Ca\(^{2+}\) measurements using genetically encoded sensors
2.4. Characterization of the ATP probe in vitro
2.5. Confocal imaging
2.6. RT-qPCR
2.7. Western Blotting
2.8. Statistical analysis
2.9. Computational approaches for identification of putative components of ER ATP transporter

3. RESULTS

3.1. Generation of genetically encoded FRET based fluorescent ATP biosensor
3.1.1. Characterization of ERAT4.01
3.1.2. FRET efficiency of ERAT4.01 in the presence of 2-Deoxyglucose
3.2 ERAT4.01 detects ATP changes due to inhibition of ATP generating processes in different cell types
3.3. ER Ca\(^{2+}\) mobilization leads to an increase of ATP within the lumen of the ER
3.3.1. Ca\(^{2+}\) coupled ER ATP elevation is majorly due to ER Ca\(^{2+}\) mobilization without significant contribution from cytosolic and mitochondrial Ca\(^{2+}\)
3.3.2. Ca\(^{2+}\) coupled ER ATP elevation needs continuous synthesis of ATP
3.4. Cell splitting and nutrient starvation affects Ca\(^{2+}\) coupled ER ATP elevation
3.4.1. Role of AMPK and Autophagy on Ca\(^{2+}\) coupled ER ATP elevation
3.5. Computational biology approach to identify putative components and regulators of ER ATP transport

4. DISCUSSION

4.1. Design of genetically encoded FRET based fluorescent ER targeted ATP biosensor

4.2. Characterization of ERAT4.01

4.3. Inverse correlation between $\text{Ca}^{2+}$ and ATP levels in the ER

4.4. $\text{Ca}^{2+}$ coupled ER ATP elevation needs continuous synthesis of ATP

4.5. AMPK and Autophagy play important role in $\text{Ca}^{2+}$ coupled ER ATP elevation

4.6. Computational biology approach for identifying putative components of ER ATP transport complex

4.7. Summary and Conclusions

BIBILOGRAPHY

PUBLICATIONS
<table>
<thead>
<tr>
<th>Abbreviations</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2-DG</td>
<td>2-Deoxyglucose</td>
</tr>
<tr>
<td>4E-BP</td>
<td>Eukaryotic translation initiation factor 4E-binding protein 1</td>
</tr>
<tr>
<td>AAC</td>
<td>Mitochondrial ADP/ATP carrier</td>
</tr>
<tr>
<td>ABCD2</td>
<td>ATP-binding cassette sub-family D member 2</td>
</tr>
<tr>
<td>ABCD3</td>
<td>ATP-binding cassette sub-family D member 3</td>
</tr>
<tr>
<td>ADP</td>
<td>Adenosine diphosphate</td>
</tr>
<tr>
<td>Akt</td>
<td>Protein kinase B</td>
</tr>
<tr>
<td>AMBRA1</td>
<td>Activating molecule in BECN1-regulated autophagy protein 1</td>
</tr>
<tr>
<td>AMPK</td>
<td>AMP activated protein kinase</td>
</tr>
<tr>
<td>ANT</td>
<td>Adenine nucleotide translocator</td>
</tr>
<tr>
<td>ATF4</td>
<td>Activating transcription factor 4</td>
</tr>
<tr>
<td>ATF6</td>
<td>Activating transcription factor 6 alpha</td>
</tr>
<tr>
<td>ATG7</td>
<td>Autophagy-related protein 7</td>
</tr>
<tr>
<td>ATP</td>
<td>Adenosine triphosphate</td>
</tr>
<tr>
<td>ATP5L</td>
<td>ATP synthase subunit g, mitochondrial</td>
</tr>
<tr>
<td>BFP</td>
<td>Blue Fluorescent Protein</td>
</tr>
<tr>
<td>BHQ</td>
<td>Tert-Butylhydroquinone</td>
</tr>
<tr>
<td>BiP</td>
<td>Binding immunoglobulin protein</td>
</tr>
<tr>
<td>BLAST</td>
<td>Basic Local Alignment Search Tool</td>
</tr>
<tr>
<td>bZIP60</td>
<td>Basic Leucine Zipper Domain 60</td>
</tr>
<tr>
<td>Ca²⁺</td>
<td>Calcium ion</td>
</tr>
<tr>
<td>CaMKKβ</td>
<td>Calcium/calmodulin-dependent protein kinase kinase beta</td>
</tr>
<tr>
<td>CDS2</td>
<td>Phosphatidate cytidlyltransferase 2</td>
</tr>
<tr>
<td>CFP</td>
<td>Cyan Fluorescent Protein</td>
</tr>
<tr>
<td>cGMP</td>
<td>Cyclic guanosine monophosphate</td>
</tr>
<tr>
<td>CHOP</td>
<td>C/EBP-homologous protein</td>
</tr>
<tr>
<td>CICR</td>
<td>Ca²⁺ induced Ca²⁺ release</td>
</tr>
<tr>
<td>CLN3</td>
<td>Ceroid-lipofuscinosis, neuronal 3</td>
</tr>
<tr>
<td>CLN5</td>
<td>Ceroid-lipofuscinosis, neuronal 5</td>
</tr>
<tr>
<td>CLN6</td>
<td>Ceroid-lipofuscinosis, neuronal 6</td>
</tr>
<tr>
<td>CNX</td>
<td>Calnexin</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Name</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>COX</td>
<td>Cytochrome c oxidase</td>
</tr>
<tr>
<td>cpFP</td>
<td>Circularly permuted fluorescent protein</td>
</tr>
<tr>
<td>cpmVenus</td>
<td>Circularly permuted monomeric Venus</td>
</tr>
<tr>
<td>CRT</td>
<td>Calreticulin</td>
</tr>
<tr>
<td>Cvt</td>
<td>Cytoplasm to vacuole transport</td>
</tr>
<tr>
<td>DAP1</td>
<td>Disks large-associated protein 1</td>
</tr>
<tr>
<td>DMEM</td>
<td>Dulbecco's Modified Eagle Medium</td>
</tr>
<tr>
<td>DNA</td>
<td>Deoxyribonucleic acid</td>
</tr>
<tr>
<td>DTT</td>
<td>Dithiothreitol</td>
</tr>
<tr>
<td>DUBs</td>
<td>Deubiquitinases</td>
</tr>
<tr>
<td>EB</td>
<td>Experimental buffer</td>
</tr>
<tr>
<td>EC</td>
<td>Excitation–contraction</td>
</tr>
<tr>
<td>ECFP</td>
<td>Enhanced cyan fluorescent protein</td>
</tr>
<tr>
<td>ECM29</td>
<td>Proteasome-associated protein ECM29 homolog</td>
</tr>
<tr>
<td>EGFP</td>
<td>Enhanced Green fluorescent protein</td>
</tr>
<tr>
<td>eIF2α</td>
<td>Eukaryotic initiation factor 2 alpha</td>
</tr>
<tr>
<td>ER</td>
<td>Endoplasmic reticulum</td>
</tr>
<tr>
<td>ERAD</td>
<td>ER-associated protein degradation</td>
</tr>
<tr>
<td>FADH₂</td>
<td>Flavin adenine dinucleotide</td>
</tr>
<tr>
<td>FADS2</td>
<td>Fatty acid desaturase 2</td>
</tr>
<tr>
<td>FCS</td>
<td>Fetal calf serum</td>
</tr>
<tr>
<td>FIP200</td>
<td>RB1-inducible coiled-coil protein 1</td>
</tr>
<tr>
<td>FRET</td>
<td>Förster resonance energy transfer</td>
</tr>
<tr>
<td>GFP</td>
<td>Green fluorescent protein</td>
</tr>
<tr>
<td>GO</td>
<td>Gene Ontology</td>
</tr>
<tr>
<td>Grp94</td>
<td>Glucose regulated protein 94</td>
</tr>
<tr>
<td>HAT</td>
<td>Hypoxanthin, Aminopterin and Thymidine</td>
</tr>
<tr>
<td>I\textsubscript{CRAC}</td>
<td>Inward rectifying current called Ca\textsuperscript{2+} release-activated Ca\textsuperscript{2+} current</td>
</tr>
<tr>
<td>InsP\textsubscript{3}R</td>
<td>Inositol-1, 4, 5-trisphosphate receptor</td>
</tr>
<tr>
<td>IRE1</td>
<td>Inositol-requiring protein 1</td>
</tr>
<tr>
<td>JNK</td>
<td>c-Jun N-terminal kinases</td>
</tr>
</tbody>
</table>
LKB1  Liver kinase B1
LTCC  L-type Ca^{2+} channels
MCU  Mitochondrial calcium uniporter
mKOκ  Kusabira-Orange
MLCK  Myosin light chain kinase
mSECFP  Monomeric super enhanced cyan fluorescent protein
mTORC1  Mammalian target of rapamycin complex 1
NADH  Nicotinamide adenine dinucleotide
NCBI  National Center for Biotechnology Information
Orai  Calcium release-activated calcium channel protein 1
OXPHOS  Oxidative phosphorylation
p97/VCP  Transitional endoplasmic reticulum ATPase
PA-FPs  Photoactivated fluorescent proteins
PA-GFP  Photoactivatable Green fluorescent protein
PCR  Polymerase Chain Reaction
PDI  Protein disulfide isomerase
PERK  Pancreatic eIF2-alpha kinase
PI3K  Phosphatidylinositol-4,5-bisphosphate 3-kinase
PRAS40  Proline-rich AKT1 substrate 1
RFP  Red fluorescent protein
RIDD  Regulated IRE1-Dependent Decay
ROS  Reactive oxygen species
RYR  Ryanodine receptor
RYR2  Ryanodine receptor 2
S6K1  Ribosomal protein S6 kinase beta-1
SERCA  Sarco/Endoplasmic reticulum calcium ATPase
SESN  Sestrin
siRNA  Small interfering Ribonucleic acid
SOCE  Store-operated Ca^{2+} entry
SR  Sarcoplasmic reticulum
STIM  Stromal interaction molecule
TagRFP-T  Tag Red fluorescent protein S158T
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>TAK1</td>
<td>Transforming growth factor beta activated kinase-1</td>
</tr>
<tr>
<td>TAP1</td>
<td>Antigen peptide transporter 1</td>
</tr>
<tr>
<td>TIDC1</td>
<td>Translocase Of Inner Mitochondrial Membrane Domain-Containing 1</td>
</tr>
<tr>
<td>TSC1/2</td>
<td>Tuberous sclerosis 1</td>
</tr>
<tr>
<td>UCP2</td>
<td>Uncoupling protein 2</td>
</tr>
<tr>
<td>Ulk1/2</td>
<td>Serine/threonine-protein kinase ULK1</td>
</tr>
<tr>
<td>UPR</td>
<td>Unfolded protein response</td>
</tr>
<tr>
<td>USP13</td>
<td>Ubiquitin carboxyl-terminal hydrolase 13</td>
</tr>
<tr>
<td>VPS34</td>
<td>Vacuolar protein sorting 34</td>
</tr>
<tr>
<td>Xbp1</td>
<td>X-box binding protein 1</td>
</tr>
<tr>
<td>YFP</td>
<td>Yellow Fluorescent Protein</td>
</tr>
<tr>
<td>YOD1</td>
<td>Ubiquitin thioesterase OTU1</td>
</tr>
<tr>
<td>ZIPK</td>
<td>Zipper-interacting protein kinase</td>
</tr>
</tbody>
</table>
Abstract

The endoplasmic reticulum (ER) is a central organelle which is used for carrying out cellular functions such as protein folding, post translational modifications of proteins, degradation and protein secretion. Most of these process need ATP binding and or hydrolysis. In this project a genetically encoded FRET based fluorescent ATP biosensor was designed and targeted into the lumen of the ER. Using this biosensor an inverse correlation between ER Ca\(^{2+}\) mobilization and an elevation of ER ATP levels was observed which is independent of the mode of ER Ca\(^{2+}\) release. Experiments further demonstrated that this Ca\(^{2+}\) coupled ER ATP rise is highly sensitive to AMP dependent protein kinase (AMPK) and autophagy. In addition it was seen that in the cancer cells ER could fulfill its energy requirements by shifting from glycolysis to oxidative phosphorylation (OXPHOS) as central ATP generation system in the conditions of nutrient starvation. Moreover, experiments revealed that the ER needs continuous supply of ATP for carrying out its biological functions and thus requires a well regulated ER ATP transport system. A computational biology based approach has been applied in order to identify some of the proteins that might be regulating ER ATP transport. It is believed that an understanding of the physiological significance of ER ATP transport mechanisms and their regulation will help in a long way in realizing the pathological consequences associated with protein misfolding and cellular regulation of cancer. This in long term could become a novel paradigm for therapeutic drug development.
Adenosine triphosphate (ATP) the energy currency of the cell provides chemical energy within cells for various metabolic pathways and is used by enzymes and structural proteins in many cellular processes, including biosynthetic reactions, motility, and cell division. The endoplasmic reticulum (ER) is the cellular organelle responsible for various protein related functions and also stores two fold positively charged calcium ions (Ca\(^{2+}\)). There are several processes carried out in ER which demand energy in the form of ATP but it is still unclear exactly how much amount of ATP is present in ER at any given state in the free or bound form. On the other hand quite a lot of knowledge exists regarding ER Ca\(^{2+}\) homeostasis. But it has been unclear how Ca\(^{2+}\) homeostasis regulates ER ATP dynamics. An understanding of the ATP changes in the lumen of the ER will help in long way to better understand inter-organelle communication for cellular metabolites and thus pave the way for the development of new concepts of complex biological processes such as aging, neuro-degeneration, and tumorigenesis.

1.1. Functions of the Endoplasmic Reticulum

The ER is an organelle associated with several biological functions such as protein folding [1], post translational modifications of proteins such as N-glycosylation [2], and O-mannosylation [3]. The ER can also connect to and consequently act cooperatively with other membranous structures within a cell and the plasma membrane [4]. Among the various intracellular organelles that interact with the ER, include the Golgi apparatus, mitochondria, peroxisomes, endosomes and lysosomes [4]. Mitochondria have well-characterized connections with the ER [5]. For example a recent paper proposed a potential mechanism for ER association-induced mitochondrial fission, involving actin polymerization and the ER-localized protein inverted formin 2 (INF2) [6]. In addition it has been suggested that autophagosome membranes could be derived primarily from the ER. Ktistakis and colleagues have demonstrated that during amino acid starvation the cell generates a phosphatidylinositol 3-phosphate (PtdIns3P) compartment (termed the omegasome) which is connected to the ER and plays a very important role for autophagosome formation [7]. Furthermore it has also been shown that the ER is the key organelle which is used for synthesis of several lipids such as ceramides, phospholipids, and cardiolipins [8], [9]. Despite of all the resources dedicated to protein folding, a significant fraction of newly synthesized polypeptides entering the ER fails to acquire a
native conformation [10]. In many cases, the misfolded molecules are retained in the ER and eventually become substrates of the ER-associated protein degradation (ERAD), a collection of quality-control mechanisms that clears the ER from these potentially harmful species [11]. Most secretory proteins first enter the ER for folding and assembly. To maintain proper processing of ER functions, cells coordinate a protein quality-control system with a signaling network, the unfolded protein response (UPR) [12]. The UPR is triggered by ER trans-membrane sensors upon ER stress, a cellular condition referring to the accumulation of unfolded proteins in the ER [13]. If cells are unable to overcome ER stress, the UPR represses the adaptive response and triggers apoptosis [12]. Inositol-requiring protein 1 (IRE1), an ER transmembrane protein, monitors ER homeostasis through an ER luminal stress-sensing domain and triggers the UPR through a cytoplasmic kinase domain and an RNase domain (Fig 1) [12]. On ER stress mammalian IRE1 initiates diverse downstream signaling of the UPR either through splicing of the transcription factor Xbp-1 or through post-transcriptional modifications via Regulated IRE1-Dependent Decay (RIDD) of multiple substrates [12]. In addition to IRE1, Pancreatic eIF2-alpha kinase (PERK), and activating transcription factor 6 alpha (ATF6) are two other ER transmembrane proteins that contain an ER luminal stress-sensing domain and a cytoplasmic enzymatic domain [14]. In order to prevent a further demand of protein-folding in the ER, PERK transiently inhibits general protein translation through phosphorylation of eukaryotic initiation factor 2 alpha (eIF2α). Phosphorylated eIF2α in turn can also activate translation of mRNAs including the ATF4 transcription factor to regulate UPR target genes [15]. ER stress triggers translocation of ATF6 from the ER to the Golgi apparatus, where it undergoes proteolytic cleavage. The cleaved transcription factor domain of ATF6 enters the nucleus to execute UPR regulation [16]. Life versus death balance is continuously monitored and tightly controlled in the ER. The prevalence of malfunctioning cells due to irremediable ER stress contributes to diseases such as cancer and diabetes. Conversely, over commitment to cell death could lead to organ damage or cell-degenerative diseases [17], [18]. To reach optimal fitness under ER stress, cell fates are determined through regulation of adaptive and apoptotic responses [19].
Fig 1: Regulation of unfolded protein response (UPR) in eukaryotes. The inositol-requiring enzyme 1 (IRE1) arm is conserved in eukaryotes. IRE1 splices the bZIP transcription factors Xbp-1 and bZIP60 and Hac1 mRNA in mammals, plants, and yeast, respectively. The spliced bZIP transcription factor enters into the nucleus and controls the expression of UPR target genes. Two other distinct arms mediated by PERK and ATF6 regulate the mammalian UPR. ATF6 is an ER transmembrane transcription factor. ER stress triggers the translocation of ATF6 from the ER to the Golgi apparatus, where it undergoes proteolytic cleavage. Thereafter transcription factor domain of ATF6 enters into the nucleus to modulate transcription of UPR target genes. PERK is another ER transmembrane protein kinase. On ER stress, PERK phosphorylates eukaryotic initiation factor 2 alpha (eIF2α), which blocks general protein translation and allows selective translation of the transcription factor ATF4. Under conditions of irreversible ER stress, PERK–eIF2α–ATF4–CHOP and IRE1–JNK activate apoptosis in mammalian system [20].

1.1.1. Calcium (Ca\(^{2+}\)) in the Endoplasmic Reticulum

The ER is recognized as the major dynamic Ca\(^{2+}\) storage organelle of eukaryotic cells. Thereby the ER regulates the cellular Ca\(^{2+}\) homeostasis through the existence of several Ca\(^{2+}\) binding proteins which act as buffers by having a low-affinity and large capacity for Ca\(^{2+}\) binding. The most abundant of these proteins are protein chaperones such as
calreticulin (CRT), calnexin (CNX), BiP/GRP78, GRP94 and protein disulfide isomerase (PDI)s. These proteins are responsible for maintaining the ER Ca\(^{2+}\) concentration ([Ca\(^{2+}\)]\(_{ER}\)) within a physiological range of \(\sim 400\) μM to 1 mM [21], [22], [23]. Release of Ca\(^{2+}\) from these internal ER stores is regulated by various channels, of which the inositol-1, 4, 5-trisphosphate receptor (InsP\(_3\)R) and ryanodine receptor (RYR) families have been studied most extensively. The main regulator of these channels is Ca\(^{2+}\) itself and the process of Ca\(^{2+}\) triggered Ca\(^{2+}\) release from the ER is one of the major mechanisms of Ca\(^{2+}\) signaling [24]. Ca\(^{2+}\) mobilizing second messengers that are generated when stimuli bind to cell surface receptors decide whether Ca\(^{2+}\) can activate these channels. One of these messengers is inositol-1, 4, 5-trisphosphate (IP\(_3\)) [25]. IP\(_3\) diffuses within the cell, binds the InsP\(_3\)Rs and thus release Ca\(^{2+}\) from the ER stores. Excitation–contraction (EC) coupling causes a signaling cascade that allows the cardiac action potential to trigger myocyte contraction. Depolarization of the cardiomyocyte membrane leads to activation of voltage-gated L-type Ca\(^{2+}\) channels (LTCC) located in the plasma membrane of excitable cells. Ca\(^{2+}\) influx via LTCC spark a much greater release of Ca\(^{2+}\) from the sarcoplasmic reticulum (SR) via the ryanodine receptor type-2 (RyR2), through the process of Ca\(^{2+}\) induced Ca\(^{2+}\) release (CICR) [26]. The sarco/endoplasmic reticulum Ca\(^{2+}\)-ATPase (SERCA), a Ca\(^{2+}\) pump, which exists in the ER as well as the SR, maintains the resting Ca\(^{2+}\) gradient by refilling the ER stores upon passive Ca\(^{2+}\) leak. In tissues different isoforms of SERCA exist [27] [28]. Upon IP\(_3\) production cytoplasmic Ca\(^{2+}\) gets elevated due to emptying of ER Ca\(^{2+}\) stores and this activates two distinct phases. In the first phase, Ca\(^{2+}\) is released from the ER via the IP\(_3\)R. In the second phase, the decreased ER Ca\(^{2+}\) content resulting from IP\(_3\)R activation induces an influx of extracellular Ca\(^{2+}\) via plasma membrane Ca\(^{2+}\) channels in a mechanism called capacitative or store-operated Ca\(^{2+}\) entry (SOCE) [29]. It has been shown until now that Ca\(^{2+}\) entry via SOCE requires a underlying inward rectifying current called Ca\(^{2+}\) release-activated Ca\(^{2+}\) current (I\(_{CRAC}\)) [28]. It is now clear that SOCE requires members of two families of proteins: the stromal interacting molecules (STIMs), which act as Ca\(^{2+}\) sensors in the ER, and the Orai (Orai1, Orai2, and Orai3) which specifically act as pore-forming subunits of SOCE channels [30]. These molecules work in such a fashion that ER Ca\(^{2+}\) store depletion leads to clustering of the ER resident STIM molecules near the plasma membrane where they activate Orai Ca\(^{2+}\) entry channels. It has been shown only during cell division that SOCE is strongly suppressed [31] and thus provide an interesting avenue of research regarding the physiological role of SOCE during cell division. The basic function of the SOCE is suggested to maintain basal
level of discreet repetitive Ca\(^{2+}\) discharges in the cell known as Ca\(^{2+}\) oscillations and thus regulate the ER Ca\(^{2+}\) stores with minimal changes [32]. In addition it has been shown that \([\text{Ca}^{2+}]_{\text{cyt}}\) regulates the subcellular distribution of STIM1 oligomers and prevents subplasmalemmal STIM clustering, even in the conditions when \([\text{Ca}^{2+}]_{\text{ER}}\) is depleted [33]. Moreover, SOCE is completely inhibited when both NCX\(_{\text{mito}}\) is blocked and the inner mitochondrial membrane is depolarized, in STIM1 and Orai1 overexpressing cells [34]. Very recently it was demonstrated that knock-down of mitochondrial calcium uniporter (MCU) or uncoupling protein 2 (UCP2), results in decelerated STIM1 oligomerization and impaired SOCE upon cell stimulation with an (IP\(_3\))-generating agonist [35].

### 1.1.2. Connection between ER Ca\(^{2+}\) storage and protein folding

The ER not only plays a critical role in Ca\(^{2+}\) signaling, but also provides a quality-control system (Fig 2) for the proper folding of proteins and for sensing stress [35]. A large group of ER-resident chaperones such as calreticulin, calnexin, PDI, and GRP78/BiP bind unfolded or misfolded proteins via inappropriately exposed hydrophobic or hypoglycosylated residues [36]. Calreticulin and calnexin bind to polypeptide chains entering the ER lumen through glycosylated residues while PDI leads to correct disulfide bond formation. GRP78/BiP undergoes cycles of binding and release of unfolded proteins until they are properly folded and hydrophobic residues are inaccessible. ER-resident chaperones such as calreticulin, GRP78/BiP, and GRP94 require high levels of ER Ca\(^{2+}\) for their activity and this is one of the reasons for why ER Ca\(^{2+}\) must always be maintained in an environment of continuous intracellular Ca\(^{2+}\) signaling. Failure of this homeostatic mechanism, for example, by inhibition of SERCA with thapsigargin, activates UPR to either reestablish normal ER function or to eliminate the cell [37] via several cell death mechanisms. The adaptive mechanisms initiated by the UPR involve reduced translation of misfolded proteins, increased translation of ER chaperones to enhance the folding capacity of the ER and finally degradation of misfolded proteins through (ERAD) [35].
Fig 2: Role of ER Ca\(^{2+}\) in maintenance of ER functional homeostasis. Figure on the left depicts well known ER resident proteins and chaperons in keeping the physiological protein folding function under normal ER Ca\(^{2+}\) conditions [35]. Figure on the right shows upon chronic reduction in ER Ca\(^{2+}\) conditions in pathological conditions, proteins are misfolded and this leads to activation of UPR. Specifically these processes include IRE1 dimerization which leads to XBP1 splicing and downstream activation of ERAD, synthesis of chaperones and lipids. In another pathway ATF6 migrates to golgi apparatus wherein it stimulates activation of CHOP this in turn reduces Bcl-2, glutathione and stimulates Bim, ROS. Finally, UPR also leads to phosphorylation of eIF2α this in addition to stimulation of glutathione activates NADPH, antioxidants, amino acids and chaperones [38].

1.1.3. ATP on and in the Endoplasmic Reticulum

Several chaperones in the ER need ATP for their function. For example BiP requires ATP binding for the systematic release of peptide from the translocation complex [39]. In addition it has been suggested that BiP requires ATP in order to bind other ER stress players such as IRE1 and PERK [40]. Furthermore, it has been shown that ATP binding to ATPase domain of BiP is important for the maintenance of the structural integrity of the ER [41]. ATP and ADP exchange has been shown to be necessary for the newly synthesized peptide to translocate into the luminal ER in a BiP dependent manner [42]. In addition to BiP several other ER luminal chaperones such as Grp170, GRP94, calreticulin, PDI, ERp72 have been associated with nucleoside triphosphate and especially with ATP binding [43], [44].The P-type ATPases are present in all living cells where they mediate
ion transport across membranes on the expense of ATP hydrolysis. Within the protein family of P-type ATPases, the Ca\(^{2+}\)-ATPases are of special interest, since Ca\(^{2+}\) plays a very important role in signal transduction in eukaryotic cells. This ATPase is one of the most ATP consuming P-type ATPase pump in the ER [45]. Degradation of misfolded proteins synthesized in the ER requires energy. Most nonnative polypeptides are retained and degraded in the ER lumen by a mechanism that involves ATP consumption [37]. The eukaryotic endoplasmic reticulum (ER) maintains protein homeostasis by eliminating unwanted proteins through the ERAD pathway. During ERAD, unfolded and excess polypeptides are removed from the ER lumen and/or lipid bilayer through the process of retrotranslocation and are ultimately degraded by the proteasome. Ubiquitin chain length, linkage and branching for non-native proteins is an extremely regulated process and requires opposing activities of ubiquitin-conjugating cascade enzymes and the families of deubiquitinases (DUBs). Many DUBs have been implicated in ERAD, including YOD1, USP13 and Ataxin-3, which bind the retrotranslocation driving ATP consuming ATPase p97/VCP present on ER membrane either directly or indirectly [46].

1.1.4. Cellular ATP generation by Glycolysis and oxidative phosphorylation in relation to ER functioning

Glycolytic pathway is one of the central ATP generating systems in virtually all cells, including both prokaryotes and eukaryotes. In eukaryotes, glycolysis takes place in the cytosol. This pathway is considered to contain three stages. Stage 1, which is the conversion of glucose into fructose 1, 6-bisphosphate, consists of three critical steps: a phosphorylation, an isomerization, and a second phosphorylation reaction. The main objective of these initial steps in glycolysis is to trap the glucose in the cell and form a compound that can be readily cleaved into phosphorylated three-carbon units. Stage 2 involves cleavage of the fructose 1, 6-bisphosphate into two three-carbon fragments. In stage 3, ATP is generated when the three-carbon fragments are oxidized to pyruvate [46]. Thus the net reaction in the transformation of glucose into pyruvate is given by:

\[
\text{Glucose} + 2 \text{Pi} + 2 \text{ADP} + 2 \text{NAD}^+ \rightarrow 2 \text{Pyruvate} + 2 \text{ATP} + 2 \text{NADH} + 2\text{H}^+ + 2 \text{H}_2\text{O}
\]

Thus, finally in glycolysis two molecules of ATP are produced with the conversion of one molecule of glucose to two molecules of pyruvate [47]. Although glucose is the most widely used monosaccharide for glycolysis, there are other two abundant sugars fructose
and galactose which can be funneled into the glycolytic pathway. Most of the ingested fructose is metabolized by the liver, using the fructose 1-phosphate pathway. In this pathway the first step is the phosphorylation of fructose to fructose 1-phosphate by fructokinase. Fructose 1-phosphate is then broken down into glyceraldehyde and dihydroxyacetone phosphate, which is an intermediate in glycolysis. This aldol is then cleaved by a specific fructose 1-phosphate aldolase. Glyceraldehyde is then phosphorylated to glyceraldehyde 3-phosphate, which is a glycolytic intermediate, by triose kinase. In an alternate route, fructose can be phosphorylated to fructose 6-phosphate by hexokinase [47]. Galactose on the other hand is converted into glucose 6-phosphate in four steps. The first step is the phosphorylation of galactose to galactose 1-phosphate by galactokinase. In the next step products of this reaction, catalyzed by galactose 1-phosphate uridyltransferase, are converted into UDP-galactose and glucose 1-phosphate. Then this galactose moiety of UDP-galactose is epimerized to glucose, wherein the configuration of the hydroxyl group at carbon 4 is inverted by UDP-galactose 4-epimerase. In the end step, glucose 1-phosphate, formed from galactose, is isomerized to glucose 6-phosphate by phosphoglucomutase [48].

The NADH and FADH$_2$ produced during glycolysis, fatty acid oxidation, and the citric acid cycle are energy-rich molecules as each of these contains a pair of electrons having a high transfer potential. When these electrons are used to reduce molecular oxygen to water, a large amount of free energy in the form of ATP is generated. This process, which essentially takes place in mitochondria, is the major source of ATP in aerobic organisms. Oxidative phosphorylation (OXPHOS) produces 26 of the 30 molecules of ATP that are formed when glucose is completely oxidized to CO$_2$ and H$_2$O [48]. The flow of electrons from NADH or FADH$_2$ to O$_2$ through protein complexes located in the mitochondrial inner membrane causes pumping out of protons out of the mitochondrial matrix. This leads to an uneven distribution of protons which in turn generates a pH gradient and a transmembrane electrical potential that creates a proton-motive force. Finally ATP is synthesized when protons flow back to the mitochondrial matrix through an enzyme complex [49]. It has been known that anabolic substrates, nucleosides and amino acids can be catabolized for energy generation. For example RNA breakdown yields nucleosides, which are degraded to ribose-phosphate. The Six ribose-phosphate molecules generated during the above mentioned process are energetically equivalent to five glucose-phosphates, and like glucose-phosphate derived by glycogen breakdown, they can yield
adenosine triphosphate (ATP) either aerobically or anaerobically. On the other hand amino acids and lipids yield ATP only through oxidative phosphorylation [50].

Under the conditions of glucose and amino acid starvation, many aspects of the ER stress response reprogram the cell to conservation mode. As such, the adaptive ER stress response detects potential proteotoxicity due to misfolded proteins due to decreased ATP levels for example, and rebalances the proteome by decreasing overall cellular protein synthesis, and focusing cellular resources on synthesizing essential proteins [51]. Thus, stress signaling from the ER in response to misfolded proteins could lead to shift in metabolism towards maintenance of essential cellular functions and modulating cellular growth. Consistent with this hypothesis are the results of a microarray study that characterized changes in the transcriptome in mouse hearts upon activation of the ATF6 branch of the ER stress response, which is considered to be adaptive [52].

1.2. AMP activated protein kinase and autophagy

AMP activated protein kinase (AMPK) is a well characterized cellular energy stress sensor which is activated in the conditions of lower ATP/AMP ratio, and via calcium/calmodulin-dependent protein kinase kinase beta (CaMKKβ) which is activated by Ca^{2+}, this in turn stimulates AMPK. In the conditions of cell stress such as nutrient unavailability which leads to lower ATP/AMP ratio, AMPK is activated by means of induction by liver kinase B1 (LKB1). Once AMPK is induced it activates cellular catabolic processes such as glycolysis, OXPHOS, fatty acid synthesis, autophagy to name a few. AMPK is also involved in inhibition of several processes such as fatty acid oxidation, triglyceride synthesis, cholesterol biosynthesis, protein synthesis and glycogen synthesis [53]. AMPK is also involved in the activation of autophagy which then provides the necessary raw material for the activation of cellular catabolic processes such as glycolysis and thus prevents cell death. One of the pathways by which AMPK activates autophagy is by the inhibition of mTORC1 that is associated with the hyperphosphorylation of Atg13 which in turn prevents the Ulk1/2-Atg13-Atg17 complex formation and Ulk1/2 which are known to be associated with autophagosome formation. AMPK is also known to directly activate the Ulk1/2 and thus can activate the downstream processes associated with autophagy. The illustration below (Fig 3) explains the process involved in the activation of autophagy by AMPK [53].
Fig 3: Fine adjustment of autophagy by the AMPK - mTORC1-Ulk1/2 kinase network. The two protein complexes AMPK and mTORC1 are known to operate oppositely the autophagy inducing complex Ulk1/2-Atg13-FIP200. Under normal supply of growth factors and nutrients, mTORC1 stimulates growth related processes such as protein translation, by phosphorylation of S6K1 and 4E-BP, while inhibiting self-consuming processes such as autophagy. mTORC1 activity is positively regulated by growth factor signaling via the PI3K-Akt pathway. Akt stimulates mTORC1 by inhibition of TSC1/2 or PRAS40, two negative regulators of mTORC1 activity that inhibit the Rheb-mediated activation. Hypoxia on the other hand inhibits mTORC1 activation via the TSC1/2-Rheb pathway by activation of REDD1. In a different case amino acids stimulate the Rag-GTPase-dependent recruitment of mTORC1 to lysosomes and are subsequently activated by Rheb-GTPases. The activity of AMPK depends on phosphorylation by upstream kinases, such as LKB1. AMPK activity is further enhanced by reduced ATP/AMP ratios. In addition, upstream kinases such as CaMKKβ and TAK1 have been associated with AMPK-mediated autophagy induction by intracellular Ca²⁺ and TRAIL treatment, respectively. Under low ATP/AMP conditions, AMPK activates autophagy via inhibition of mTORC1. This releases the negative regulation of mTORC1 on the Ulk1/2-Atg13-FIP200 complex. AMPK antagonizes the mTORC1 activity either through the TSC1/2-Rheb pathway or by phosphorylation of raptor. Moreover, AMPK is also able to bind, phosphorylate, and directly activate Ulk1/2. Furthermore, this interaction is counteracted by mTORC1. In another scenario sustained TORC1 activation, leads to the accumulation of sestrin (SESN) in Drosophila, a DNA damage-inducible protein that suppresses TOR activity by AMPK activation. Furthermore, mTORC1 not only inhibits autophagy by suppressing Ulk1/2 kinase activity, but also by simultaneously inhibiting DAP1, a negative regulator of autophagy. Ulk1 kinase activity has been proposed thus far. Two downstream targets of Ulk1 have been proposed thus far. First, Ulk1 directly phosphorylates AMBRA1 and, second, it phosphorylates and activates a distinct myosin light chain kinase (MLCK) in mammals (ZIPK) and Drosophila (Sqa) [54].
Furthermore it has also been shown to be associated with the induction of GRP78 during conditions of unfolded protein response. Having said that there is almost no direct mechanistic insight regarding the AMPK driven activation of the ER stress response and how ER ATP levels might be affected upon AMPK activation.

1.3. Endoplasmic reticulum ATP transporters and their regulators

In eukaryotic cells, several types of intracellular adenine nucleotide transport proteins have been characterized at the molecular level. In this group of proteins mitochondrial ADP/ATP carrier (AAC) is one of the most prominent members of the mitochondrial carrier family (MCF) [55], [56]. Many studies have unveiled ATP transport across the ER membrane [57], [55]. It is only in the plant Arabidopsis thaliana that a clear ER ATP transporter ER-ANT1 has been described [58]. In mammals such an ER ATP transporter has been unknown until now. But it is pertinent that an identification of ER ATP transporters in mammals and more specifically in humans would be very important for several reasons. First of all identification of an ER ATP transporter system would help us in studying the mode and amount of ATP transport across the ER and thereby understand at a quantitative levels the ATP requirements in the ER. Secondly, and connected to first point is several of very important biological processes carried out in the ER such as UPR, protein folding demand ATP [59], [52] for their functioning and therefore ATP consumption by these processes would be understood greatly by identification of the ER ATP transport regulators. Moreover, important cellular energy stress sensors such as AMPK are highly sensitive to cellular ATP changes and are known to stimulate processes such as autophagy to provide for the cellular ATP requirements under global cellular ATP depletion. But it is unclear how such stress regulators affect ATP requirements in the ER and specifically do they directly affect some components of ER ATP transporters and thereby act as feedback regulators of ATP into the ER. Thus, experiments could be performed in order to study interaction between putative ER ATP transporter candidates and energy stress sensors such as AMPK in order to unravel their role in ATP assisted ER metabolism [60]. Therapeutically identification of such ER ATP transporters could be exploited to develop synthetic chemicals which could regulate ER ATP transport and could therefore in principle affect processes such as ER protein folding and cell proliferation [61]. This approach could be used in drug development in diseases such as cancer and diabetes.
1.4. Methods for measuring ATP levels in the cell

There are some methods for measurement of ATP levels in the cell described in the literature. Primarily those consist of chromatography based methods, use of selective ATP sensitive plasma membrane bound potassium channels [62], luciferase-luciferin method [63] and recently developed genetically encoded cytosolic ATP sensor [64]. In the chromatography based methods nucleotides are separated using ion-exchange HPLC [61]. This method suffers from several disadvantages such as long separation times associated with ion exchange columns. Moreover due to conversion between ATP to ADP and AMP, strict addition of the ATPase is necessary while isolating nucleotide from tissues or the cells. Furthermore this method is not real time and does not give estimates of the ATP levels in live cells. In the method describing use of ATP sensitive K\(^+\) channels, specific patch clamp recordings are obtained for sub-plasma level K\(^+\) channels (Kir6.2ΔC) which are inhibited by ATP concentrations. From this method cellular ATP levels in the oocytes of *Xenopus*, and mammalian cells was found to be 5 mM, and 1 mM respectively under resting conditions [65]. The primary disadvantage of this method of cellular ATP measurement is that it is an indirect method and can give variable results under different voltage conditions. Luciferase-luciferin method is most widely used method for determining ATP levels in the cell. In this method the following reaction scheme is used in order to estimate ATP levels in the cell [64], [63].

\[
\text{Luciferase} + \text{Luciferin} + \text{ATP} \quad \rightarrow \quad \text{Luciferase-Luciferyl-AMP} + \text{PPi}
\]

\[
\text{Luciferase-Luciferyl-AMP} + \text{O}_2 \quad \rightarrow \quad \text{Luciferase} + \text{Oxyluciferase} + \text{AMP} + \text{CO}_2 + \text{hv}
\]

The basic principle of this method is the addition of the luciferase and luciferin to the cells grown on multi-wells. This luciferase-luciferin in turn binds to ATP and thus gets converted into AMP. This complex then reacts with molecular O\(_2\) and gives luciferase, oxyluciferase, AMP, CO\(_2\) and luminescence which can be measured using luminometer. The key limitations of this method are saturation of luciferase with ATP, requirement of the free O\(_2\) to be used for the reaction and the high dependence of the reaction on the available pH in the cell.
Due to above mentioned limitations for measuring ATP levels in cell new fluorescent protein based genetically encoded ATP sensors have been [63] developed. These have allowed cellular ATP measurements in real time and at a single cell level [66].

1.5. Fluorescent proteins

The first fluorescent protein to be discovered was the Green fluorescent protein (GFP) (Fig 4) from *Aequorea victoria* by Shimomura *et al.* [67]. It has a major excitation wavelength at 395 nm, while a minor excitation wavelength is present at 475 nm. The emission wavelength of this protein is at 509 nm. The crystal structure GFP was solved by Remington *et al.* and it was shown to consist of 11-stranded β barrel with coaxial helix [68].

![Fig 4: Green Fluorescent Protein.](image)

The first fluorescent protein to be discovered was the Green fluorescent protein (GFP) from *Aequorea victoria* by Shimomura *et al.* [67]. It has a major excitation wavelength at 395 nm, while a minor excitation wavelength is present at 475 nm. The emission wavelength of this protein is at 509 nm. The crystal structure GFP was solved by Remington *et al.* and it was shown to consist of 11-stranded β barrel with coaxial helix [68].

Specific sidechains of the barrel induce cyclization reactions in the tripeptide Ser65–Tyr66–Gly67 which triggers ionization of HBI to the phenolate form and thus chromophore formation. This process of post-translational modification is known as maturation [69].

1.5.1. Different types of fluorescent protein

The standard GFP has the disadvantage that it has two excitation wavelengths as mentioned earlier and it is not very photo-stable and is pretty dim [70]. Therefore several variants of GFP have been developed with improved excitation, emission dynamics and also having better photo-stability (Table 1). Some variations of GFP fluorescent protein which emits fluorescence at different spectral wavelengths are represented in Table 2.
Table 1: Variants of GFP

<table>
<thead>
<tr>
<th>Mutation</th>
<th>Excitation max (nm)</th>
<th>Emission max (nm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wild type</td>
<td>396, 475</td>
<td>508</td>
</tr>
<tr>
<td>S65A</td>
<td>471</td>
<td>504</td>
</tr>
<tr>
<td>S65C</td>
<td>479</td>
<td>507</td>
</tr>
<tr>
<td>S65T</td>
<td>488</td>
<td>511</td>
</tr>
<tr>
<td>Y66F</td>
<td>360</td>
<td>442</td>
</tr>
<tr>
<td>Y66H</td>
<td>382</td>
<td>448</td>
</tr>
<tr>
<td>Y66W</td>
<td>436</td>
<td>485</td>
</tr>
</tbody>
</table>

Table 2: Different types of fluorescence protein

<table>
<thead>
<tr>
<th>Fluorescent proteins</th>
<th>Name</th>
<th>λex</th>
<th>λem</th>
<th>Extinction coefficient</th>
<th>Brightness</th>
<th>Aggregation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blue</td>
<td>mTagBFP2</td>
<td>399</td>
<td>454</td>
<td>50600</td>
<td>32.4</td>
<td>Monomer</td>
<td>[71]</td>
</tr>
<tr>
<td></td>
<td>Azurite</td>
<td>383</td>
<td>450</td>
<td>26200</td>
<td>14.4</td>
<td>Monomer</td>
<td>[69]</td>
</tr>
<tr>
<td></td>
<td>Sapphire</td>
<td>399</td>
<td>511</td>
<td>29000</td>
<td>18.6</td>
<td>Monomer</td>
<td>[72]</td>
</tr>
<tr>
<td></td>
<td>T-Sapphire</td>
<td>399</td>
<td>511</td>
<td>44000</td>
<td>26.4</td>
<td>Monomer</td>
<td>[73]</td>
</tr>
<tr>
<td>Cyan</td>
<td>ECFP</td>
<td>433</td>
<td>475</td>
<td>32500</td>
<td>13.0</td>
<td>Monomer</td>
<td>[73]</td>
</tr>
<tr>
<td></td>
<td>Cerulean</td>
<td>433</td>
<td>475</td>
<td>43000</td>
<td>26.7</td>
<td>Monomer</td>
<td>[74]</td>
</tr>
<tr>
<td></td>
<td>mTurquoise2</td>
<td>434</td>
<td>474</td>
<td>30000</td>
<td>27.9</td>
<td>Monomer</td>
<td>[69]</td>
</tr>
<tr>
<td>Green</td>
<td>Emerald</td>
<td>487</td>
<td>509</td>
<td>57500</td>
<td>37.3</td>
<td>Monomer</td>
<td>[75]</td>
</tr>
<tr>
<td></td>
<td>Clover</td>
<td>505</td>
<td>515</td>
<td>111000</td>
<td>84.4</td>
<td>Monomer</td>
<td>[76]</td>
</tr>
<tr>
<td></td>
<td>mNeonGreen</td>
<td>506</td>
<td>517</td>
<td>116000</td>
<td>92.8</td>
<td>Monomer</td>
<td>[77]</td>
</tr>
<tr>
<td>Yellow</td>
<td>Citrine</td>
<td>516</td>
<td>529</td>
<td>77000</td>
<td>58.5</td>
<td>Monomer</td>
<td>[78]</td>
</tr>
<tr>
<td></td>
<td>Venus</td>
<td>515</td>
<td>528</td>
<td>92200</td>
<td>52.5</td>
<td>Monomer</td>
<td>[79]</td>
</tr>
<tr>
<td>Red</td>
<td>mKOk</td>
<td>551</td>
<td>563</td>
<td>105000</td>
<td>64.0</td>
<td>Monomer</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>mOrange</td>
<td>548</td>
<td>562</td>
<td>71000</td>
<td>49.0</td>
<td>Monomer</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>mCherry</td>
<td>587</td>
<td>610</td>
<td>72000</td>
<td>15.8</td>
<td>Monomer</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>mStrawberry</td>
<td>574</td>
<td>596</td>
<td>90000</td>
<td>26.1</td>
<td>Monomer</td>
<td>[80]</td>
</tr>
<tr>
<td></td>
<td>tdTomato</td>
<td>554</td>
<td>581</td>
<td>138000</td>
<td>95.2</td>
<td>Monomer</td>
<td>[81]</td>
</tr>
<tr>
<td></td>
<td>TagRFP-T</td>
<td>555</td>
<td>584</td>
<td>81000</td>
<td>33.2</td>
<td>Monomer</td>
<td>[82]</td>
</tr>
<tr>
<td></td>
<td>mRuby</td>
<td>558</td>
<td>605</td>
<td>112000</td>
<td>39.2</td>
<td>Monomer</td>
<td>[83]</td>
</tr>
<tr>
<td>Photo-activable</td>
<td>PA-GFP</td>
<td>504</td>
<td>517</td>
<td>17400</td>
<td>13.7</td>
<td>Monomer</td>
<td>[84]</td>
</tr>
<tr>
<td></td>
<td>PAmCherry1</td>
<td>564</td>
<td>595</td>
<td>18000</td>
<td>8.3</td>
<td>Monomer</td>
<td>[85]</td>
</tr>
<tr>
<td></td>
<td>mEos2 (green)</td>
<td>506</td>
<td>519</td>
<td>56000</td>
<td>47.0</td>
<td>Monomer</td>
<td>[86]</td>
</tr>
</tbody>
</table>
1.5.2. Applications of Fluorescent Proteins

In the past decade, fluorescent proteins have been widely used in the noninvasive live cell imaging, expressed in organisms for reporter gene expression studies, protein trafficking analysis, and for measuring many other dynamic biochemical signals [87]. Now with GFP, it is possible to tag actin and microtubule binding proteins, or for that matter label organelles that are interacting with the cytoskeleton [88]. Furthermore, GFP and its variants have been applied in tracking the secretory pathway initiating from ER on route to secretion [89]. One of the most common uses of GFP has been as a reporter of gene transcription or a protein of interest. GFP imparts stability to its fusion protein partners and allows for clear estimation of protein locale and quantity. Moreover, when cloned under the control of a promoter of interest, fluorescent proteins (FPs) can highlight promoter activity in a given genetic environment, in particular cells and tissues, in specific time, and in response to an external stimuli [90]. Multiple FPs has been combined to visualize locations of proteins in different cell types in living systems. Not only that, it was recently reported that a mixture of several FPs obtained by random recombination enabled multicolor cell labeling with more than 100 different color shades which could be distinguished by standard fluorescent microscopy. This was demonstrated in one of the most beautiful applications ever developed with the use of FPs, brainbow [91]. In vivo imaging of mRNAs production, localization, and dynamics is a very important tool for live cell studies. Therefore, several methods have been developed for real-time mRNA labeling using fluorescent proteins [92]. Moreover, as both mRNA and fluorescent protein constructs are genetically encoded, these approaches could potentially be applied within stable cell lines and transgenic animals. The recently developed photoactivated fluorescent proteins (PA-FPs) offer a powerful approach for dissecting cellular protein trafficking patterns and inter-organelle exchange within such steady-state systems as several kinds of proteins in the system can be selectively highlighted and followed over a time course [93]. PA-FPs has widespread usage for understanding early development. This methodology has permitted the researchers to study coordinated cell movements during embryonic development because subsets of cells could be photoconverted and their movement could be tracked over time [94]. Furthermore, PA-FPs has become powerful tools in new super-resolution microscopy techniques that overcome the diffraction barrier [85]. These techniques permit biologists to visualize the structures and processes of the cell at the molecular level [95-102].
1.6. Genetically encoded fluorescent biosensors

The basic function of fluorescence-based sensors when they are used for live-cell imaging is to convert a molecular event into an optical signal that is amenable to microscopy. Until now over 100 different genetically encoded sensors have been developed for cellular targets as different as ions; molecules; enzymatic activity; oxidation-reduction events; changes in membrane potential and channel conformation; and phases of the cell cycle [103].

Fluorescent biosensors are widely used tools to visualize and quantify the given cellular analyte in real time and at a single cell level. These fluorescent protein based biosensors can be classified into 3 subtypes (1) modulators of the förster resonance energy transfer (FRET) between the fluorescent proteins (2) biomolecules inducing conformational changes and thereby affecting the spectral properties of the single fluorescent protein (3) sub cellular translocation of the fluorescent protein based sensor in the cell [103].

The technical versatility of genetically encoded sensors is further demonstrated by the fact that this vast majority of sensors can be encompassed by a handful of straightforward design platforms (Fig 5), including translocation-based probes, intensity-based single fluorescent protein probes, ratiometric-based single fluorescent protein probes, and FRET-based probes, where FRET can be altered by conformational change, enzyme activity, or enzymatic cleavage.
Fig 5: (a) A translocation-based probe for detecting the plasma membrane PtdIns (4, 5) P2 concentration [104]. The PH domain of PLC-δ1, which can selectively recognize PtdIns (4, 5) P2, is fused with GFP. When PtdIns (4, 5) P2 in the plasma membrane is reduced, the sensor translocates from the plasma membrane to the cytosol, this in turn increases cytosolic fluorescence. Examples include sensors for phosphoinositides. (b) An intensity-based single fluorescent protein probe GCaMP2 49 and 50. GCaMP2 [105] consists of the M13 fragment from myosin light chain kinase (shown in purple), a circularly permuted EGFP (shown in green) and calmodulin (CaM, shown in red). Ca\(^{2+}\) binding promotes the binding of M13 to CaM, which alters the protonation state of the chromophore, leading to an increase in fluorescence intensity. Some of the examples include sensors for Ca\(^{2+}\), Cl\(^{-}\) and H\(^{+}\). (c) A ratiometric single-FP-based redox sensor, roGFP [106]. The relative fluorescence intensity of the two excitation maxima of roGFP1 which shifts depending on the predominant redox state: reduction causes a reduction in the excitation at 400 nm and an increase in the excitation at 480 nm (arrows). Examples in this category include the ratiometric H\(^{+}\) sensor pHlorin, the ratiometric Ca\(^{2+}\) sensor pericam, and sensors for cGMP and membrane potential. (d) A FRET sensor, ZapCY, which is activated by conformational change [107] of the Zn\(^{2+}\) binding domain (zinc fingers 1 and 2 of transcription factor Zap1) in the presence of Zn\(^{2+}\) which leads to an increase in FRET between CFP and YFP. Examples of this sensing platform include cameleon Ca\(^{2+}\) sensors, sensors for sugars, glutamate, Zn\(^{2+}\), cAMP, cGMP, NO and membrane potential. (e) The FRET-based sensor Phocus for kinase activity [108]. Upon phosphorylation of the substrate domain (shown in pink) by protein kinase, the adjacent phosphorylation recognition domain (shown in purple) binds to the phosphorylated substrate domain, which causes a change in FRET between CFP and YFP. Examples include sensors for kinases and GTPase activity (e.g. Raichu probes). (f) Schematic of a protease-activated FRET biosensor for caspase [109]. During apoptosis, activated caspase cleaves off DEVD amino acid sequence, which reduces the FRET between GFP and BFP. Examples of this sensor platform include those for caspases and matrix metalloproteases [110].
1.6.1. FRET based genetically encoded biosensors

FRET based biosensors consists of a biological analyte binding domain which is flanked by donor fluorophore protein and acceptor fluorophore protein. Upon excitation of the donor fluorophore using donor excitation wavelength, an emission in the donor wavelength is detected. While when analyte binds to the analyte binding domain, a conformational change occurs in the analyte binding domain which brings donor and acceptor fluorophores close to each other leading to FRET from donor to acceptor fluorophore. In this scenario, an excitation in donor wavelength gives higher emission in the acceptor fluorophore wavelength while lower emission is observed in donor fluorophore wavelength.

In the FRET based measurements, FRET efficiency plays a major role and thus can be defined as quantum yield occurring per energy transition event from the donor fluorophore excitation.

\[
E = \frac{K_{ET}}{K_f + K_{ET} + \sum K_i}
\]

Where, \(K_{ET}\) is rate of energy transfer, \(K_f\) is radiative decay rate; \(K_i\) is rate constant for any other de-excitation pathway [111].

Furthermore, the \(E\) also depends on \(r\) the distance between donor and acceptor with inverse of the 6th power law, given as:

\[
E = \frac{1}{1 + (r/R_0)^6}
\]

Where, \(R_0\) is förster distance donor and acceptor fluorophores at 50% of the FRET efficiency [112].

Thus, in FRET based measurements relative ratio of the acceptor to donor intensity is plotted over the time.

The key advantage of FRET based biosensors is that it allows signal quantification in real time and thus it is possible in these measurements to calculate FRET efficiencies, donor-acceptor stoichiometry, and the relative interaction affinity. Furthermore, FRET based sensors are more robust towards incident light based photobleaching and phototoxicity.
based effects and thus are very stable. FRET biosensors can be widely used for protein-protein interaction and protein clustering studies [63]. Some of the FRET based biosensors are represented in Table 3.

Table 3: Some examples of FRET based sensors

<table>
<thead>
<tr>
<th>Target type</th>
<th>Specificity</th>
<th>Name</th>
<th>Type</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ions</td>
<td>Zn(^{2+})</td>
<td>ZinCh</td>
<td>FRET-based biosensors</td>
<td>[63]</td>
</tr>
<tr>
<td>Redox &amp; Voltage</td>
<td>Voltage</td>
<td>VSFPs</td>
<td>FRET-based biosensors</td>
<td>[113]</td>
</tr>
<tr>
<td>Kinase activity</td>
<td>Src</td>
<td>Src reporter</td>
<td>FRET-based biosensors</td>
<td>[114]</td>
</tr>
<tr>
<td>Protein Activation &amp; Conformation</td>
<td>Rho family GTPase activation</td>
<td>Raichu-RhoA</td>
<td>FRET-based biosensors</td>
<td>[115]</td>
</tr>
<tr>
<td>Metabolites</td>
<td>cAMP</td>
<td>PKA-camps</td>
<td>FRET-based biosensors</td>
<td>[116]</td>
</tr>
<tr>
<td>Metabolites</td>
<td>glutamine</td>
<td>FRET glutamine</td>
<td>FRET-based biosensors</td>
<td>[116]</td>
</tr>
<tr>
<td>Metabolites</td>
<td>Glucose</td>
<td>FLIPglu sensors</td>
<td>FRET-based biosensors</td>
<td>[38]</td>
</tr>
</tbody>
</table>

1.6.2. Basic Principle of FRET based sensors

In FRET based sensors when analyte is not bound to analyte binding domain, excitation at the donor wavelength leads to the emission in the donor wavelength. Excitation in the acceptor wavelength causes emission in the acceptor wavelength (Fig 6). Once the analyte binds to analyte binding domain a conformational change in the analyte binding domain brings the donor and acceptor close to each other. In this case excitation in the donor wavelength causes FRET from donor to acceptor and an emission in the acceptor emission range are obtained. Therefore a ratio of acceptor intensity of emission to donor emission intensity gives a measure of amount of analyte bound to the analyte binding domain. This could be used indirectly but in real time and at single cell level amount of analyte present at particular given condition.
**Fig 6: Basic Principle of FRET based sensors.** When analyte is not bound to biosensor, excitation at donor or acceptor fluorophore wavelengths gives emission at their respective emission wavelengths. Upon binding of analyte to analyte binding domain (red) a conformational change occurs in the biosensor causing a FRET, wherein excitation at donor wavelength gives emission at acceptor wavelength. The ratio of acceptor emission to donor emission intensity gives relative quantification of the analyte.

1.6.3. Genetically encoded Biosensors for measurement of ATP in the ER and other cellular compartments.

One of methods for measuring ER ATP levels is use of ER targeted luciferase. But there are several drawbacks with this method. First of all luciferase activity in the ER is affected by luciferase present in the method. Secondly, since luciferase activity requires oxygen, in rapidly respiring cells there is a limitation of the net oxygen available for the luciferase activity. Moreover, the ATP levels in the cell (in mM range) quite easily saturate the luciferase and thus it is quite difficult to have a clear estimate of the ATP levels in the ER. Furthermore, this method is not real time and does not give ATP estimation at the single cell level [39]. Therefore with these tools it is difficult to measure quantitatively and in real time cellular ATP changes. To overcome these limitations genetically-encoded fluorescence resonance energy transfer (FRET)-based ATP probes that employ the ε subunit of the bacterial F$_0$F$_1$-ATP synthase as ATP binding domain (Fig 7) was used [42]. By using these indicators, the ATP levels in different cellular compartments and the dynamics of ATP in real-time could be monitored at the single cell level.
This sensor AT1.03 was used to measure cytosolic ATP levels at single cell level. The same group also modified the ATP sensor for targeting it into the nucleus or mitochondrial matrix, by either adding a triplet of the nuclear localization signal of SV40 large T-antigen or a duplex of the mitochondrial targeting signal of cytochrome c oxidase subunit VIII respectively (nucAT1.03 and mitAT1.03) [43].

Moreover, the same research team also modified the existing ATP sensor and expressed it in Drosophila S2 cells and Caenorhabditis elegans, and thus succeeded in imaging the in vivo ATP dynamics of these model animals at single-cell resolution [117]. Another recently developed ATP sensor PercevalHR which is based on the ATP-binding bacterial protein GlnK1. For the design of this sensor a yellow cpFP, circularly permuted monomeric Venus (cpVenus), was integrated into the T loop of GlnK1 yielding a fluorescent sensor of ATP [63], [118]. The drawbacks of this sensor are that it is not ratiometric and some pH corrections are necessary to quantify the cellular ATP changes. Recently, a highly fascinating paper describing ATP biosensor Syn-ATP was published and it could be used to measure ATP consumption in presynaptic neurons [63]. In this sensor a mutated version of the firefly luciferase is fused with pH resistant and photostable mCherry. These fusions of bioluminescent and fluorescent protein are linked to synaptophysin for the tagging of Syn-ATP to presynaptic neurons [118]. The advantage of this ATP sensor is that it exploits the brightness of luciferase and photostability of mCherry. Moreover, it gives ratiometric values for ATP levels.

Until now most of the genetically encoded fluorescent protein based ATP sensors have been used to study overall cellular, mitochondrial and nuclear ATP changes, thus there is a great need for the development of ATP probes for other cellular organelles. Specifically in the case of ER, for which not much is known regarding ATP dynamics and regulation. As part of this effort we have developed a genetically encoded FRET based ER targeted ATP biosensor.
1.7. Aims and Objective

It has been known that several physiological functions carried out in ER require ATP for example BiP requires bound ATP for its release of peptide from the translocation complex [119] and also for binding to other ER stress sensors such as IRE1 and PERK [119] for their functioning during ER stress response. In addition to BiP several other ER luminal chaperones such as Grp170, GRP94, calreticulin, PDI and ERp72 have been shown to be associated with nucleoside triphosphate and especially with ATP binding and or hydrolysis [120], [121]. Moreover, many misfolded polypeptides are retained and degraded in the ER lumen by a mechanism that involves ATP consumption [122]. The aim of the present study is to understand ATP dynamics and its regulation in the ER. The following objectives have been elaborated:

1.7.1. Design of genetically encoded FRET based fluorescent ATP biosensor targeted into the lumen of Endoplasmic reticulum

There are not many methods available which are used for measurement of ATP dynamics in the ER. One method that had been used in past is the use of ER targeted luciferase for the monitoring of ER ATP levels. But there are several drawbacks with this method such as luciferase activity in the ER is affected by luciferase present in the detection kit. Since luciferase activity requires oxygen, in rapidly respiring cells there is also limitation of the net oxygen available for the luciferase activity. Finally the method is not real time and does not provide spatial and temporal information. Now, with the advent of modern live cell microscopy and innovations in development of genetically encoded biosensors it is now possible to selectively design novel biosensors that could be used to measure ATP changes in the ER at a single cell level. Therefore in this study a genetically encoded FRET based fluorescent ATP biosensor targeted into the lumen of ER is designed to understand the ER ATP dynamics.

1.7.2. Study of correlation between ATP changes and calcium dynamics in Endoplasmic reticulum

ER is the main storage site of Ca^{2+} and several of the functions carried out in the ER such as protein folding require both ATP and Ca^{2+}. Therefore with the development of ER
targeted ATP biosensor study of the correlation between Ca$^{2+}$ dynamics and ATP changes in ER is also attempted in the present study.

1.7.3. Investigating the role of AMP dependent protein kinase (AMPK) and autophagy on Endoplasmic reticulum ATP dynamics

Up until now role of energy stress sensor AMPK has been studied in regulation of global ATP homeostasis, but little has been known regarding the signaling from AMPK on local ER ATP dynamics. In this study Ca$^{2+}$ dependent ATP change as a model signal is used to understand the effect of AMPK and autophagy on ER ATP dynamics.

1.7.4. Identification of putative regulators of ER- ATP transporter complex

The fulfillment of above objectives would also pave way for further experiments using both computational and wet lab based approaches to elucidate mechanisms by which ATP changes might be regulated in the ER especially in relation to its transport and feedback modulation. Finally such understanding of signaling pathway will eventually help in development of novel therapeutics that might be used to affect ATP transport in ER in various pathological conditions. So a bioinformatics approach was used to identify putative components of ER ATP transport regulators.
2 Materials and Methods

In order to study ER ATP changes and its correlation with ER Ca\(^{2+}\) dynamics, several approaches were followed. These included use of genetic tools for development of biosensor, application of live cell imaging for characterization of the genetically encoded biosensor and also computational approaches applied in order to identify putative candidates for ER ATP transporter.

2.1. Construction of ER-targeted ATP probes

To design ERAT4.01, the ATP-binding box (i.e., \(\varepsilon\)-subunit) of the F\(_0\)F\(_1\)-ATP synthase of *Bacillus subtilis* was amplified from AT1.03 [63] including restriction sites for SphI and SacI by PCR. Subsequently, the D1 domain (design1 of calmodulin and M13 sequence) of the ER-targeted Ca\(^{2+}\) probe D1ER [63] was exchanged for the ATP-binding box using the restriction enzymes SphI and SacI in the pUC19 (+) cloning vector and the complete ER-targeted ATP sensor transferred into the pcDNA3.1 (+) expression vector via the restriction sites of HindIII and EcoRI. In analogy, the ER-targeted ATTeams ERAT3.01N7Q and ERAT3.01N7Q, R122K, R126K and the respective red-shifted ATP probes ERGRAT, ERGRATN7Q, and ERGRATN7Q, R122K, R126K containing TagRFP on the N-terminus and EGFP on the C-terminus were constructed.

ATP box SphI for: GGGCATGCGA\[\text{ACTGTGAAAAGTGAATATATAAC}\]

ATP box SacI rev: AAGAGCTCG\[\text{TGTGAAAAAGTGAATATAC}\]

2.2. Cell culture and transfection

Human umbilical vein endothelial cells (EA.hy926) was cultured in DMEM containing 10% FCS, 100 U/ml penicillin, 100 µg/ml streptomycin and 1% HAT (5 mM hypoxanthin, 20 µM aminopterin and 0.8 mM thymidine), HeLa cells were cultured in the same medium without HAT supplement, and HEK-293 cells were grown in DMEM supplemented with 10% fetal calf serum (FCS). The rat pancreatic insulinoma cell line (INS-1 832/13) was cultured in RPMI 1640 medium containing 10% FCS, 2 mM L-glutamate, 11.1 mM D-glucose, 1 mM sodium pyruvate, 5 µM mercaptoethanol, 100 U/ml penicillin and 100 µg/ml streptomycin. All cells were kept at 37°C in 5% CO\(_2\). For experiments and transfection, cells were grown on 30 mm glass cover slips and transfected at 50% confluence with 1.5 µg of plasmid DNA (per 30 mm well) using 4 µg/well TransFast™
(Promega, Madison, WI) transfection reagent in 0.5 ml of serum and antibiotic-free transfection medium. Cells were maintained in the incubator (37°C, 5% CO₂, 95% air) for 16–20 hours before changing the medium back to normal culture medium. Cells were transfected with respective constructs after reaching 50% confluence. Cells were transiently transfected with the FRET-based ER targeted ATP biosensor ERAT4.01, mitochondrial or cytosolic ATP sensor mitAT1.03 or AT1.03 [118] or the ER Ca²⁺ sensor D1ER [119] cytosolic Ca²⁺ sensor D3cpv [119] and mitochondrial Ca²⁺ sensor mtD3cpv [123]. Standard AMPKα/β siRNA was obtained from Santa Cruz Biotechnology (Dallas, TX) [121,123].

The constructs and siRNA used in the present study are tabulated in Table 4 and Table 5.

### Table 4: Constructs used in this study

<table>
<thead>
<tr>
<th>Name of Construct</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>ERAT4.01</td>
<td>[120]</td>
</tr>
<tr>
<td>AT1.03</td>
<td>[121]</td>
</tr>
<tr>
<td>mitAT1.03</td>
<td>[122]</td>
</tr>
<tr>
<td>D1ER</td>
<td>[123]</td>
</tr>
<tr>
<td>D3cpv</td>
<td>[123]</td>
</tr>
<tr>
<td>mtD3cpv</td>
<td>[119]</td>
</tr>
</tbody>
</table>

### Table 5: siRNA used in this study

<table>
<thead>
<tr>
<th>siRNA target genes</th>
<th>sequence</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMPKα1/2</td>
<td></td>
<td>Santa Cruz Biotechnology</td>
</tr>
<tr>
<td>ATG7</td>
<td>5‘-CAGUGGAUCUAACUCACUAAAGGAUAU-3’</td>
<td>[124]</td>
</tr>
<tr>
<td>VPS34</td>
<td>5‘-GUGUGAUGAUAAGGAUAU-3’</td>
<td>[123]</td>
</tr>
</tbody>
</table>

### 2.3. ATP and Ca²⁺ measurements using genetically encoded sensors

Cells transfected with the respective FRET-based sensors were grown on 30-mm glass coverslips. Before experiments, cells were kept in a loading buffer containing (in mM) 135 NaCl, 5 KCl, 2 CaCl₂, 1 MgCl₂, 20 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES), 2.6 NaHCO₃, 0.44 KH₂PO₄, 0.34 Na₂HPO₄, and 10 D-glucose with 0.1% vitamins, 0.2% essential amino acids, and 1% penicillin/streptomycin for 2–8 h at room temperature. Glucose starvation was induced by incubating cells with loading buffer
without glucose. Coverslips were subsequently put into a perfusion chamber and imaged using described settings. Single cell ATP and Ca\(^{2+}\) measurements were performed using a Zeiss AxioVert inverted microscope (Zeiss, Vienna, Austria) equipped with a polychromator illumination system (VisiChrome high speed, xenon lamp, Visitron Systems, Puchheim, Germany) and a thermoelectric-cooled CCD camera (PhotometricsCoolSNAP HQ, Visitron Systems) or a Nikon Eclipse TE300, a polychromator lamp (Opti Quip 770), and a liquid-cooled CCD camera (Photometrics Quantix KAF, Roper Scientific, Tucson, AZ). Cells were imaged with a 40× oil immersion objective (Zeiss or Plan Fluar 40× oil objective, Nikon) with continuous perfusion in EB with or without stimulants. Excitation of the biosensors was accomplished at 440 ± 10 nm (440AF21, Omega Optical, Brattleboro, VT), and emission was recorded at 480 and 535 nm using a beam splitter (Optical Insights, Visitron Systems). Excitation filters were adjusted through a filter-wheel (MAC 6000/5000, Ludl Electronic Products, and Hawthorne, NY). Devices were controlled and data were acquired by MetaFluor 4.6r3 or VisiView 2.0.3 (Universal Imaging, Visitron Systems) software and analyzed with GraphPad Prism version 5.00 for Windows (GraphPad Software, San Diego, CA)[125] [126].

Cell permeabilization was obtained using a mixture of 10 μM digitonin and 2 μM ionomycin in a buffer containing 130 mM KCl, 10 mM HEPES, pH 7.2 (KOH), with or without 2 mM Ca\(^{2+}\) (CaCl\(_2\)) and with or without 1–10 mM MgATP or 10 mM CaATP [121].

2.4. Characterization of the ATP probe in vitro

The fluorescence spectra of purified AT1.03 in the absence and presence of 100, 200, 300, 400, and 500 μM Ca\(^{2+}\) were measured using a buffer containing 50 mM 3-(N-morpholino)propane sulfonic acid–KOH (pH 7.3), 50 mM KCl, 0.5 mM MgCl\(_2\), and 0.05% Triton X-100 at 37°C with a FP-6500 spectrofluorometer (Jasco, Tokyo, Japan). To obtain the fluorescence spectra, CFP was excited with 435 ± 20 nm light, and emission from 460 to 600 nm was scanned. To measure the time course of CFP emission change, CFP was excited using 435 ± 5 nm light and emission at 475 ± 10 nm was monitored by adding MgATP at specific time points. In these experiments equimolar amounts of MgCl\(_2\) were added to obtain MgATP complex.
2.5. Confocal imaging

High-resolution images for localizing ERAT4.01 were acquired by array confocal laser scanning microscopy. The array confocal laser scanning microscope was built on an inverse, fully automatic microscope (Axio Observer.Z1; Zeiss, Göttingen, Germany) equipped with a 100× oil immersion objective (Plan-Fluor ×100/1.45 oil; Zeiss), a Nipkow-based confocal scanner unit (CSU-X1; Yokogawa, Tokyo, Japan), a motorized filter wheel (CSUX1FW; Yokogawa) on the emission side, and an acousto-optical tunable filter–based laser merge module for laser lines 405, 445, 473, 488, 515, and 561 nm (Visitron Systems, Puchheim, Germany). ERAT4.01 was excited at 445 nm; ER RFP was excited at 561 nm. Emission was acquired with a charge-coupled device camera (CoolSNAP-HQ; Photometrics, Tucson, AZ). All devices were controlled by VisiView Premier Acquisition software (Visitron Systems) [127].

2.6. RT-qPCR

Total RNA was isolated using RNeasy mini kit from Qiagen. First strand cDNA synthesis was performed with 2 μg of RNA. Real time PCR was performed using the light cycler 480 (Roche Diagnostics) and QuantiFast SYBR Green PCR kit (Qiagen). Gene-specific primers were designed using the real time PCR tool from IDT Scitoools (Integrated DNA Technologies) and obtained from Invitrogen. PCRs were performed in 10 μl with the following parameters: 95 °C for 5 min followed by two steps cycling at 95 °C for 10 s and 60 °C for 30 s for 40 cycles [128].

2.7. Western blotting

HeLa cells were washed twice with ice-cold PBS and total cellular protein was isolated by lysing the cells with RIPA buffer containing a protease inhibitor mixture (Sigma). The protein concentration was measured using a Thermo Scientific Pierce BCA protein assay kit (Thermo Fisher Scientific Inc.). 30 μg of protein were separated by SDS-PAGE and transferred to a nitrocellulose membrane. The membrane was incubated with the primary antibody at 4 °C overnight and the primary antigen-antibody complex was detected by incubating the blot with a horseradish peroxidase-conjugated secondary antibody at room temperature for 1 h. The membrane was further developed with the ECL plus Western
blotting detection system (GE Healthcare). To control the equal amount of protein loading all detected proteins were densitometrically normalized to β-actin [123].

2.8. Statistical analysis

Data shown represent mean ± SEM, where n is the number of single cells of three or more independent experiments or just the number of individual experiments. Statistical analyses were performed with unpaired Student's t test, and p < 0.05 was considered to be significant.

2.9. Computational approaches for identification of putative components of ER ATP transporter

For the identification of putative components of ER ATP transporter complex Arabidopsis thaliana ER-ANT1 (uniprot ID: Q8LB08) was sequence aligned with homologous human proteins using blastp server of NCBI database (version: 2.2.29+) ([http://blast.ncbi.nlm.nih.gov/Blast.cgi](http://blast.ncbi.nlm.nih.gov/Blast.cgi)) [129] using default parameters. The identified human SLC25A family of proteins were then multiple sequence aligned using MUSCLE software (version: 19 May 2014) using the standard default settings ([http://drive5.com/muscle/](http://drive5.com/muscle/)) [125]. After correcting the alignments for gaps and multiple substitutions an unrooted phylogenetic tree was built using Ugene software (version: 1.13.2) [130]. Proteins on the phylogenetic tree were labeled with subcellular localization data using NYCE software ([http://cbdm.mdc-berlin.de/~amer/cgi-bin/nyce](http://cbdm.mdc-berlin.de/~amer/cgi-bin/nyce)) [131]. For getting subcellular localization data from NYCE software, fasta format protein sequences were submitted to SABLE software (version:11 April 2013) [128] to obtain the “AA” and “RSA” values ([63]). Then the values were submitted to NYCE software to obtain protein subcellular localization prediction data. The proteins having scores less than 0.4 were assumed to be localized other than nuclear, nucleocytoplasmic, cytoplasmic and extracellular and were further analyzed using human protein atlas database [63] (version:12) [118], and uniprot annotation (version:16 April 2014) [132]. The protein candidates on the phylogenetic tree which were predicted or experimentally shown to be localizing in peroxisomes, endosomes, lysosomes were then used as query in Hippie protein-protein interaction software (version: 11 Oct 2013) [133] [28]. The protein interaction network was visualized using cytoscape software (version:3.1.0) [134], [135] and annotated using GO annotation [135] (data release:17 May 2014). The categories that
were used for GO annotation included ATP binding (AA), ATPase coupled transmembrane movement of substances (ATS), endoplasmic reticulum (ER), NAD binding (NB), NADP binding (NPB), FAD binding (FB), FADH2 binding (FHB), mitochondrial membrane (MM) and were visualized on a heatmap developed on R programming language (version: 3.1.0).
3 Results

3.1 Generation of genetically encoded FRET based fluorescent ATP biosensor

To design ER targeted ATP biosensor ECFP was used as fluorescent FRET donor while citrine was used as fluorescent FRET acceptor. In the biosensor N-terminus calreticulin signal sequence and C-terminus KDEL were used for targeting and retaining the ATP biosensor into the lumen of the ER (Fig 8A). In this biosensor ATP binds reversibly to ATP binding domain (ATP box) which is sandwiched between fluorescent donor and acceptor proteins. The principle of functioning of the biosensor is when ATP is not bound to ATP binding domain (ATPbox) of biosensor an excitation of donor fluorophore leads to an emission in the donor emission wavelength. While, when ATP binds to ATP box a conformational change occurs in the biosensor which brings the donor and acceptor fluorophores close to each other and in this scenario an excitation in the donor excitation wavelength leads to a FRET from donor to acceptor fluorophore and this causes emission in the acceptor fluorophore wavelength. Thus ATP change can be measured as a ratio between intensity of acceptor fluorophore to that of donor fluorophore. For cloning the biosensor ATP box was restriction digested out of pUC19(+) using SphI and SacI. Separately D1ER was restriction digested out of pcDNA3(+) vector using HindIII and EcoRI and subcloned into the pUC19(+) vector. From this construct D1 was restriction digested out using SphI and SacI and replaced with ATP box. This vector was restriction digested using HindIII and EcoRI and the digested fragment was cloned into an empty pcDNA3(+) vector. This was the final biosensor and was named ERAT4.01 (Fig 8B). Confocal microscopy revealed clear targeting of ERAT4.01 into the lumen of ER of EA.hy926 cells and colocalized nicely with ER-RFP (Fig 8C left). ERAT4.01 also expressed nicely into the ER of several other cell lines including HeLa, INS-1 832/13 and HEK 293 cells (Fig 8C right).
Fig 8: Generation and localization of genetically encoded FRET based fluorescent ATP biosensor ERAT4.01. (A) Schematic representation of ERAT4.01. The FRET based biosensor consists of ECFP as FRET donor fluorophore and citrine as FRET acceptor fluorophore. ATP is sensed by ε-subunit of F₀F₁ ATP synthase particle of Bacillus subtilis. The biosensor consists of N-terminal calreticulin ER targeting signal sequence and C-terminus KDEL ER retention sequence. (B) Cloning steps undertaken for designing ERAT4.01. (C) Leftmost panel shows high resolution confocal imaging of EA.hy926 cells expressing ERAT4.01 (Green). Panel in middle shows confocal image of ER-targeted RFP (red). Panel on the right shows merge of ERAT4.01 and ER-RFP. Rightmost top panel shows localization of ERAT4.01 in HeLa cells. Rightmost middle panel shows localization of ERAT4.01 in INS-1 832/13 cells. Rightmost lower panel shows localization of ERAT4.01 in HEK 293 cells.

3.1.1. Characterization of ERAT4.01

In next set of in vitro experiments Ca²⁺ sensitivity of the genetically encoded ATP probe was tested (Fig 9). Both the ratio signals of the ER ATP probe in permeabilized cells (Fig 9A) and the spectral changes of the purified ATP probe in vitro were unaffected by Ca²⁺ addition in the absence of MgATP (Figs 9, B & E). These data reveal that the ER ATP dynamics studied using biosensor ERAT4.01 is per se Ca²⁺ insensitive. As expected, addition of MgATP significantly increased the ratio signal in a ratiometric manner of ERAT4.01 in permeabilized cells (Fig 9F) and the purified ATP probe in vitro (Figs 9, C-
However, in the presence of MgATP, addition of Ca²⁺ (100–500 or 2000 μM) slightly reduced the increased ratio signals of the ATP probe in vitro (Figs 9, C-E) and permeabilized cells (Fig 9G). The effect of Ca²⁺ on the ratio signal in vitro and permeabilized cells is likely to be caused by a competition between CaATP and MgATP. CaATP is not sensed by the genetically encoded ATP probe (Fig 9H).

**Fig 9: Characterization of the effect of Ca²⁺ on the ATP probe in permeabilized cells and in vitro.** (A) The effect of Ca²⁺ on ERAT4.01 signals was evaluated in cells permeabilized with 10 μM ionomycin in the presence of 10 μM digitonin. In permeabilized cells multiple Ca²⁺ elevations (2 mM Ca²⁺) in the absence of ATP do not affect the FRET signal of ERAT4.01 (solid curve). [Ca²⁺]ER was detected with D1ER (dotted curve). (B) Fluorescence spectra of the purified ER ATP probe without MgATP and in the presence of different Ca²⁺ concentrations as indicated. (C) Fluorescence spectra of the purified ER ATP probe in the presence of 4 mM MgATP and in the presence of different Ca²⁺ concentrations as indicated in B. (D) Fluorescence spectra of the purified ER ATP probe in the presence of 8 mM MgATP and in the presence of different Ca²⁺ concentrations as indicated in B. (E) ATP-dependent changes of the emission ratio of the purified ATP probe in vitro vs. the Ca²⁺ concentration. (F) Normalized FRET ratio changes of ERAT4.01 in permeabilized cells upon the addition of 1 mM Mg ATP (white column, n= 12) and 10 mM Mg ATP (black column, n= 20). Respective changes of the fluorescence of the donor and FRET channel are presented in Supplemental Figure S4A. (G) Representative curve representing normalized ratio signals of ERAT4.01 in permeabilized HeLa cells in response to 10 mM MgATP.
and the subsequent addition and removal of 2 mM Ca$^{2+}$. (H) Effect of a switch from 10 mM MgATP to 10 mM CaATP in permeabilized HeLa cells. The average curve was normalized to the maximal ratio signal, which was obtained by the addition of 10 mM MgATP ($n=4$).

Addition of the reducing agent dithiothreitol in permeabilized (Fig 10A) and intact cells (Fig 10B) minimally affected fluorescence signals of ERAT4.01 in the absence and presence of MgATP, which further confirms the redox stability of the genetically encoded ATP probe.

**Fig 10: ERAT4.01 signals are not significantly affected by redox changes.** (A) Effect of 5 mM DTT on normalized FRET ratio signals (left and middle panel, $n=8$) and respective change of the fluorescence of the donor and FRET channel of ERAT4.01 in permeabilized HeLa cells in the absence and presence of 1 mM MgATP. The reducing effect of DTT on the ratio signals was independent of the presence of MgATP. (B) Comparison between the reducing effect of 5 mM DTT and 10 mM 2-DG on the ERAT4.01 FRET signal in intact HeLa cells (control, $n=19$; plus DTT, $n=17$ and plus 2DG, $n=10$).

### 3.1.2. FRET efficiency of ERAT4.01 in the presence of 2-Deoxyglucose

The purpose of these experiments was to determine the intensity and FRET efficiency between donor acceptor fluorophores. Moreover these experiments also gave information regarding the signal to noise ratio of ERAT4.01. In these experiments 2-Deoxyglucose (2-DG) was used to inhibit the glycolysis and the effect of glycolysis inhibition on cytosolic and ER ATP dynamics was elucidated. As shown in Fig 11A in all 3 different HeLa cells having variable basal fluorescent intensities, a clear FRET based decrease in FRET acceptor fluorescence (FRET) and an increase in FRET donor ($\text{CFP(FRET-donor)}$) was observed. The FRET change in the donor and acceptor fluorophores occurred in almost the
same time and approximately mirrored each other indicating that ERAT4.01 detects ATP change very clearly and is useful for performing meaningful experiments involving ER ATP dynamics. Upon comparison of signals from cytosolic ATP biosensor [136] and ERAT4.01 it was observed that ER ATP levels drops faster as compared to cytosolic ATP levels upon addition of 2-DG in the perfusion (Figs 11B, C). This finding clearly revealed a distinct kinetics of ATP signals from ER and pointed towards a well distinguished ATP regulation in the ER. This difference in dynamics between ATP changes in the two sub cellular compartments was plotted as a slope of drop upon inhibition of glycolysis (Fig 11D).

A more careful examination of the ER ATP changes at a single cell level using ERAT4.01 indicated that ER ATP levels starts depleting from 3 minutes after addition of 2-DG in HeLa cells and at around 10 minutes the minimum ER ATP signals are detected using ERAT4.01 (Figs 12A, B, C). On re addition of D-glucose to the perfusion it was observed that in some cells and ER ATP signals recovered to about half of the initial ATP signals (Figs 12A, B, and C). This observation pointed towards the fact that ERAT4.01 can sense reversibly both ATP decrease and an increase in the ER. Furthermore high basal ATP

Fig 11: FRET efficiency of ERAT4.01 in presence of 10 mM of 2-Deoxy Glucose in HeLa cells. (A) Figure showing FRET donor fluorescence (cyan, CFP (FRET-donor)) and FRET acceptor fluorescence (green, FRET) of three different cells on treatment with 2-DG. (B) Representative ratio metric curves of HeLa cells expressing ERAT4.01 and cytoAT1.03 for measurement of ER ATP (green) and cytosolic ATP (blue) on treatment with 2-DG. (C) Average plots of \( \Delta \text{max} \), Ratio \( F_{535}/F_{480} \) of ER ATP (green) (n= 10) and cytosolic ATP (blue) (n= 13) on treatment with 2-DG. (D) Respective average plots of slope (\( \Delta R/\text{min} \)) of cells from (D) for ER ATP (green) and cytosolic ATP (blue) upon treatment with 2-DG. *P<0.05 vs respective data from ERAT4.01 signals.
ratios and good dynamic range of ERAT4.01 make it a reliable molecular tool to design experiments to study the effects of genetic and chemical perturbations on ER ATP dynamics.

3.2 ERAT4.01 detects ATP changes due to inhibition of ATP generating processes in different cell types

In these set of experiments expression of ERAT4.01 and dynamics of ATP in the ER was tested in different cell models. The cell types included EA.hy926, INS-1 832/13, HEK-293, and HeLa cells. The idea in these experiments was to have a relative qualitative estimate of the ATP pools in different cell types and to select cell models which could be used for further experiments. As seen from Figs 13A-D upon inhibition of glycolysis and OXPHOS in different cell types a clear drop in ER ATP levels with variable kinetics was observed. On comparison of ATP pools in the ER, the following cell types had starting from highest to lowest basal ATP levels: HEK-293>INS-1 832/13>EA.hy926>HeLa. From these experiments HeLa and INS-1 832/13 were selected for further studies because of their clear kinetics, fast responses times, and were stable morphologically during the course of the experiments.

Fig 12: FRET based time course experiments reveal a drop in ER ATP signals in HeLa cells expressing ERAT4.01 on treatment with 10 mM 2-DG. (A) Representative pseudocolored ratiometric images (F535/F480) of time course of two cells expressing ERAT4.01 upon treatment with 2-DG. Red pixels indicate high ratio values (>2) while blue pixels show low ratio values (<2). (B) Nonnormalized ratiometric curves of the 2 cells shown in (A) on treatment with 2-DG. (C) Photobleaching normalized curves of the 2 cells depicted in (A).
Fig 13: Effect of inhibition of glycolysis and OXPHOS on ERATP kinetics in different cell types. Upon inhibition of glycolysis and OXPHOS with 10 mM 2-DG and 2 µM oligomycin respectively on ER ATP levels drop in different cell models expressing of ERAT4.01. (A) Average normalized ratiometric curves of ER ATP dynamics in EA.hy926 cells in the presence (green, n=17) and absence (black, n= 11) of 2-DG/oligomycin. (B) Average normalized ratiometric curves of ER ATP dynamics in INS-1 832/13 cells in the presence (red, n= 61) and absence (black, n= 59) of 2-DG/oligomycin. (C) Average normalized ratiometric curves of ER ATP dynamics in HEK-293 cells in the presence (blue, n= 25) and absence (black, n= 15) of 2-DG/oligomycin. (D) Representative curves showing ER ATP drop kinetics for HEK-293 (blue), HeLa (purple), EA.hy926 (green), INS-1 832/13 (red) cells. (E) Average columns showing basal ATP levels in EA.hy926 (n= 17), INS-1 832/13 (n= 61), HEK-293 (n= 25) and HeLa (n= 23) cells. *P<0.05 vs basal ratio values of ERAT4.01 expressed in EA.hy926 cells.
In the HeLa cells inhibition of the glycolysis using 2-DG lead to sharp drop in the mitochondrial ATP levels measured with mitAT1.03 [137] which was followed by depletion in ER ATP pools (Figs 14A, B, C). On comparison of the net drops in ATP levels (Δmax Ratio F535/F480) mitochondrial ATP levels reached higher minimum as compared ER ATP pools indicating that mitochondrial ATP levels are higher in comparison to ER ATP levels as expected (Fig 14B). Alternatively inhibition of OXPHOS using oligomycin lead to transient drop in mitochondrial ATP and it recovered to the basal levels on long term perfusion with oligomycin (Figs 14D, E, F). These experiments indicated that in this cell type mitochondria might be taking ATP from glycolysis and then could be fueling the ER with ATP. Although it could be that ER might be taking ATP directly from cytosolic glycolysis independent of the mitochondrial ATP changes. More experiments would be needed to uncover the mitochondrial contribution to the ER ATP pools in this cell model.

**Fig. 14 ERAT4.01 specifically senses ER ATP changes on inhibition of glycolysis with 10 mM 2-DG in HeLa cells.** (A) Representative curves depicting ER ATP (continuous green, measured with ERAT4.01) and mitochondrial ATP (broken red, measured with mtAT1.03) dynamics on treatment with 10 mM 2-DG. (B) Average columns showing maximal drop (Δmax Ratio F535/F480) of ER ATP (open green, n= 10) and mitochondrial ATP (open red, n= 13) on treatment with 2-DG. *P<0.05 vs respective data from mtAT1.03. (C) Average columns showing slope (slope (ΔRatio/min)) of ER ATP (open green, n= 10) and mitochondrial ATP (open red, n= 13) on treatment with 2-DG. *P<0.05 vs respective data from mtAT1.03. (D) Representative curves depicting ER ATP (continuous green, measured with ERAT4.01) and mitochondrial ATP (broken red, measured with mtAT1.03) dynamics on treatment with 2 µM oligomycin. (E) Average columns showing maximal drop (Δmax Ratio F535/F480) of ER ATP (open green, n= 8) and mitochondrial ATP (open red, n= 5) on treatment with 2 µM oligomycin. (F) Average columns showing slope (slope (ΔRatio/min)) of ER ATP (open green, n= 8) and mitochondrial ATP (open red, n= 5) on treatment with 2 µM oligomycin. *P<0.05 vs respective data from mtAT1.03.
Alternatively, in INS-1 832/1 cells inhibition of the OXPHOS lead to fast drop in mitochondrial ATP levels which was followed by a drop in ER ATP levels. On the other hand inhibition of the glycolysis using 2-DG did not significantly affect mitochondrial and ER ATP levels during the time course of the experiment (Fig 15).

**Fig. 15** ERAT4.01 is able to sense ATP drop upon inhibition of oxidative phosphorylation in INS-1 832/13 cells. (A) Representative curves showing ER ATP (green continuous line) and mitochondrial ATP (red broken lines) signals in the presence of 2 µM oligomycin. Curves in grey (ER ATP continuous line, mitochondrial ATP, broken line) show the same for HeLa cells on treatment with 2 µM oligomycin. (B) Column diagrams showing average drop (Δ_max Ratio F535/F480) of mitochondrial ATP (red, open, n= 31) and ER ATP (green, closed, n= 39) on treatment with 2 µM oligomycin. (C) Column diagrams showing average slopes of drop (slope ΔRatio/min) for mitochondrial ATP (red, open, n= 31) and ER ATP (green, closed, n= 39). *P<0.05 vs respective data obtained from mtAT1.03 signals.

3.3. ER Ca\(^{2+}\) mobilization leads to an increase of ATP within the lumen of the ER.

In HeLa cells stimulation using IP\(_3\) generating agonist lead to Ca\(^{2+}\) mobilization from ER which was measured with D1ER [138] this in turn lead to corresponding elevation in ER ATP levels indicating an inverse correlation between [Ca\(^{2+}\)]\(_{\text{ER}}\) release and a rise in ER ATP signals (Fig 16A). This was further validated in experiments wherein repeated emptying and refilling ER Ca\(^{2+}\) stores was mirrored with corresponding increase and a decrease in [ATP]\(_{\text{ER}}\) (Fig 16B). This rise in [ATP]\(_{\text{ER}}\) could be due to altered energy requirements of the ER due to Ca\(^{2+}\) mobilization. The reason for this ERATP elevation might be due to a feedback activation of ATP generating mechanisms in mitochondria due to Ca\(^{2+}\) binding to some of the mitochondrial ATP generating enzymes. This increased ATP synthesis could in turn transport higher amount to ATP into the ER. In one given HeLa cell a consecutive treatment with a concentration lower than the EC50 followed by a maximal concentration of the IP\(_3\) generating agonist evoked a small and a large transient
increase in ER ATP, respectively (Fig 16C). This finding indicates that the ER ATP signal can be evoked repetitively in an ascending order of concentration of an IP₃ generating agonist (Fig 16D).

Fig 16: ER Ca²⁺ mobilization leads to a rise in ER ATP levels in HeLa cells. (A) ER ATP (upper panel, measured with ERAT4.01) and ER Ca²⁺ signals (lower panel, measured with D1ER) upon stimulation with 100 µM histamine and 100 µM ATP in an experimental buffer having 0 Ca²⁺. As shown in the figure, Ca²⁺ was added back in experimental buffer in the wash out phase after stimulation with 100 µM histamine and 100 µM ATP. (B) Figure shows effect of repetitive Ca²⁺ mobilization using 100 µM histamine and 100 µM ATP in Ca²⁺ buffer on ER ATP (upper panel, measured with ERAT4.01) and ER Ca²⁺ (lower panel, measured with D1ER) signals. (C) HeLa cells expressing ERAT4.01 consecutively treated with different concentrations of ATP. Representative curve is given as percentage of the maximal effect. The delta maximal effect is derived with 300 µM ATP and was defined as 100%. (D) Concentration response curve of ATP to cause ER ATP elevation (n= 5-14). Experiments were performed in 0Ca²⁺ in experimental buffer solution.

In the INS-1 832/13 cells similar findings were found as that of HeLa cells. In this cell model also Ca²⁺ release from ER lead to an elevation in the [ATP]ER, although as compared to the HeLa cells the ER ATP signals stayed longer at the plateau phase as compared to the HeLa cells (Fig 17 A). In this cell model also repeated ER Ca²⁺ emptying and refilling lead to corresponding elevation and drop in ER ATP levels (Fig 17B). There was a clear linear correlation between the maximal degree of ER Ca²⁺ depletion and the
increase of ER ATP levels over a concentration range from 1 to 100 μM of the IP₃ generating agonist (Fig 17C). This constant proportionality between [Ca²⁺]ER and [ATP]ER indicates that the drop of Ca²⁺ within the ER is directly coupled to an elevation of ER ATP. As in the HeLa cells ER ATP signal could be evoked repetitively in an ascending order of concentration of an IP₃ generating agonist (Fig 17D).

**Fig 17: ER Ca²⁺ mobilization leads to rise in ER ATP levels in INS-1 832/13 cells.** (A) ER ATP (upper panel, measured with ERAT4.01) and ER Ca²⁺ signals (lower panel, measured with D1ER) upon stimulation with 100 μM carbachol and 100 μM ATP in an experimental buffer having 0Ca²⁺. As shown in the figure, Ca²⁺ was added back in experimental buffer in the wash out phase after stimulation with 100 μM carbachol and 100 μM ATP. (B) Figure shows effect of repetitive Ca²⁺ mobilization using 100 μM carbachol and 100 μM ATP in 0 Ca²⁺ buffer on ER ATP (upper panel, measured with ERAT4.01) and ER Ca²⁺ (lower panel, measured with D1ER) signals. (C) Correlation between ER Ca²⁺ content (Y-axis) and ER ATP rise (X-axis) for data extracted from experiments shown in (A). (D) Concentration response curve of carbachol causing an ER ATP rise in INS-1 832/13 cell (n= 10-17). Experiments were performed in 0 Ca²⁺ experimental buffers.

To determine whether the Ca²⁺ induced increase of ATP within the ER requires the IP₃ signaling pathway, we depleted the ER Ca²⁺ store in IP₃ independent ways. First cells were treated with 2, 5-di-tert-butylhydroquinone (BHQ), an inhibitor of the SERCA. Addition of BHQ slowly reduced ER Ca²⁺ in Ca²⁺ free medium and gradually enhanced ER ATP levels (Fig 18A). In addition on treatment of the cells with thapsigargin a strong
inhibitor of SERCA also lead to a rise of $[\text{ATP}]_{\text{ER}}$. Moreover stimulation with $\text{Ca}^{2+}$ ionophore ionomycin was used in $\text{Ca}^{2+}$-free medium to deplete the ER $\text{Ca}^{2+}$ store in a SERCA and IP$_3$ independent manner (Figs 18B, C). This also caused a significant elevation in ER ATP levels. This observation further confirms that the increase of $[\text{ATP}]_{\text{ER}}$ depends on the degree of ER $\text{Ca}^{2+}$ depletion. These results indicate that, independent of its mode, ER $\text{Ca}^{2+}$ mobilization causes a significant elevation of ER ATP level.

**Fig 18:** ER ATP levels are elevated independent of mode of ER $\text{Ca}^{2+}$ mobilization. (A) In INS-1 832/13 cells recordings showing ER ATP (upper panel, measured with ERAT4.01, n=7) and ER $\text{Ca}^{2+}$ (lower panel, measured with D1ER, n= 6) signals on treatment with 15 $\mu$M BHQ followed by stimulation with 100 $\mu$M carbachol and 100 $\mu$M ATP in 0 $\text{Ca}^{2+}$ experimental buffer. As shown in figure after cell stimulation, $\text{Ca}^{2+}$ was readded in the washout phase. (B) In INS-1 832/13 cells recordings depicting ER ATP (upper panel, measured with ERAT4.01, n= 33), ER $\text{Ca}^{2+}$ (lower panel, measured with D1ER, n= 34) signals upon stimulation with 1 $\mu$M thapsigargin in 0 $\text{Ca}^{2+}$ containing experimental buffer. (C) In HeLa cells curves showing ER ATP (upper panel, measured with ERAT4.01, n= 41) and ER $\text{Ca}^{2+}$ (lower panel, measured with D1ER, n= 33) signals upon stimulation with 2 $\mu$M ionomycin in 0 $\text{Ca}^{2+}$ in experimental buffer.
3.3.1. Ca\(^{2+}\) coupled ER ATP elevation is majorly due to ER Ca\(^{2+}\) mobilization without significant contribution from cytosolic and mitochondrial Ca\(^{2+}\)

Ca\(^{2+}\) mobilization from the ER induces an increase of the cytosolic ([Ca\(^{2+}\)]\(_{\text{cyto}}\)) and mitochondrial Ca\(^{2+}\) concentrations ([Ca\(^{2+}\)]\(_{\text{mito}}\)), which facilitate ATP biosynthesis primarily by stimulating mitochondrial enzymes [139,140]. So data are not conclusive on whether ER ATP levels are elevated by Ca\(^{2+}\) induced activation of ATP biosynthesis or [Ca\(^{2+}\)]\(_{\text{ER}}\) depletion causes the process. To find out whether elevation of [Ca\(^{2+}\)]\(_{\text{cyto}}\) is sufficient to trigger an increase of [ATP]\(_{\text{ER}}\), ER ATP signals were measured in INS-1 832/13 cells treated with high K\(^{+}\). Under these conditions, Ca\(^{2+}\) entry via voltage-dependent, L-type Ca\(^{2+}\) channels elevates [Ca\(^{2+}\)]\(_{\text{cyto}}\) without [Ca\(^{2+}\)]\(_{\text{ER}}\) depletion [141]. The K\(^{+}\) induced cytosolic Ca\(^{2+}\) elevation (Fig 19A, left) did not increase the ERAT4.01 FRET signal in INS-1 832/13 cells (Fig 19A, middle), whereas ER ATP levels dropped during treatment with high K\(^{+}\). The use of D1ER revealed that under these conditions ER Ca\(^{2+}\) levels increased (Fig 19A, right), confirming an inverse correlation between [Ca\(^{2+}\)]\(_{\text{ER}}\) and [ATP]\(_{\text{ER}}\) (Fig 17A). Moreover, these experiments indicate that cytosolic Ca\(^{2+}\) elevation alone is not sufficient to trigger the ER ATP signal. In an analogous experiment, HeLa cells were treated with an IP\(_{3}\)-generating agonist in the presence of extracellular Ca\(^{2+}\), which resulted in a strong cytosolic Ca\(^{2+}\) elevation. However, the ER Ca\(^{2+}\) content was only partially affected due to activation of SOCE [140] under this condition (Fig 19B). In correlation with the ER Ca\(^{2+}\) content, there was a partial elevation in [ATP]\(_{\text{ER}}\), which was further increased by removal of Ca\(^{2+}\) from the medium (Fig 19B). Simultaneous drop of both [Ca\(^{2+}\)]\(_{\text{cyto}}\) and [Ca\(^{2+}\)]\(_{\text{ER}}\) under this condition confirms that the ER ATP increase is determined by the ER Ca\(^{2+}\) content in an inverse manner. Similar results were obtained in INS-1 832/13 cells, in which the SOCE-mediated increase of [Ca\(^{2+}\)]\(_{\text{cyto}}\) and [Ca\(^{2+}\)]\(_{\text{mito}}\) (data not shown) triggered elevation of ATP within mitochondria, whereas under these conditions [ATP]\(_{\text{ER}}\) was reduced (Fig 19C) during ER Ca\(^{2+}\) refilling (Fig 19D). These findings further demonstrate that, despite Ca\(^{2+}\)-induced augmentation of the mitochondrial ATP biosynthesis rate, [Ca\(^{2+}\)]\(_{\text{ER}}\) inversely determines [ATP]\(_{\text{ER}}\).
Fig 19: ER-Ca\(^{2+}\) content controls ER ATP in an inverse manner independent of cytosolic and mitochondrial Ca\(^{2+}\). (A) Average normalized mean ratio signal of cytosolic Ca\(^{2+}\) ± SEM over time (left), mean ERAT4.01 signal (middle), and ER Ca\(^{2+}\) (right) in INS-1 832/13 cells that were treated with 130 mM K\(^{+}\) (n = 21). (B) ER Ca\(^{2+}\) was mobilized in HeLa cells by using 100 μM histamine in the presence of 2 mM extracellular Ca\(^{2+}\) (blue curve) and propagated in the absence of Ca\(^{2+}\) in the medium as indicated. Curves show representative signals in ER Ca\(^{2+}\) (green), ER ATP (red), and cytosolic Ca\(^{2+}\) (blue) of HeLa cells expressing D1ER, ERAT4.01, or the cytosolic chameleon, respectively. Right, relative ER ATP increase in presence of Ca\(^{2+}\) (white column, n= 13) or its absence (red column, n= 13). *p < 0.05 vs. ERAT4.01 signal measured in the presence of extracellular Ca\(^{2+}\). (C) Average signals ± SEM over time of mitochondrial ATP (magenta dotted curve, n= 25) and ER ATP (red curve n= 21) in INS-1 832/13 cells upon SOCE. Cells expressed either the mitochondria-targeted ATP probe mtAT1.03 or the ER-targeted ER ATP sensor ERAT4.01. (D) ER Ca\(^{2+}\) refilling upon SOCE measured in INS-1 832/13 cells expressing D1ER (n= 6).
3.3.2. Ca\(^{2+}\) coupled ER ATP elevation needs continuous synthesis of ATP

Till now it was unclear how ER ATP is regulated. To understand this regulation, HeLa cells expressing ERAT4.01 and D1ER were pretreated with 2-DG and oligomycin and then they were stimulated with IP\(_3\) generating agonists histamine and ATP in Ca\(^{2+}\) free buffer. In these experiments pretreatment of cells with 2-DG lead to abolishing of ER ATP rise upon ER Ca\(^{2+}\) release using IP\(_3\) generating agonists, while pretreatment with oligomycin caused an elevation of ER ATP signals upon treatment with histamine and ATP which was slightly higher than the control ER ATP response (Figs 20A, B). These experiments indicated that ER in the HeLa cells needs continuous supply of ATP by glycolysis to maintain its biological processes. Very similar findings were also obtained on stimulating the cells with ionomycin after pretreating the HeLa cells with 2-DG or oligomycin (Fig 20C).
Ca\textsuperscript{2+} release (lower panel) upon stimulation with 2 µM ionomycin (as shown in A). *P<0.05 vs control.

Similar findings were also obtained in the INS-1 832/13 cells as well. These cells produce most of their ATP by OXPHOS [124]. In these cells pretreatment with oligomycin followed by stimulation with IP\textsubscript{3} generating agonist lead to almost complete inhibition of Ca\textsuperscript{2+} coupled ER ATP increase (Figs 21A, B) although the Ca\textsuperscript{2+} release from ER was the same in the control and oligomycin pretreated condition. Same results were also found when in the same protocol ionomycin instead of IP\textsubscript{3} generating agonist was used for ER Ca\textsuperscript{2+} mobilization (Fig 21C). Taken together, it seems that depending on the cell type; ER needs continuous transfer of ATP from the dominant cellular ATP generating mechanism. These data also pointed towards a regulated ATP transporter mechanism into the ER which might be controlled by cellular energy sensing systems.

**Fig 21: Ca\textsuperscript{2+} coupled ER ATP elevation needs continuous synthesis of ATP in INS-1 832/13 cells.**

(A) Curves showing ER ATP (upper panel, measured with ERAT4.01) and ER Ca\textsuperscript{2+} (lower panel, measured with D1ER) signals upon pretreatment with 2 µM oligomycin (red broken line, ER ATP; n= 63, ER Ca\textsuperscript{2+}; n= 13), and control (black continuous, ER ATP; n= 64, ER Ca\textsuperscript{2+}; n= 19) followed by stimulation with 100 µM carbachol in 0 Ca\textsuperscript{2+} containing experimental buffer. As shown in the figure Ca\textsuperscript{2+} was readded after stimulation with carbachol in the washout phase. Curves represent normalized mean ratio ± SEM over time.

(B) Columns represent effect of pretreatments including control (open black), and 2 µM oligomycin (red closed) on ER ATP elevation (upper panel) and ER Ca\textsuperscript{2+} release (lower panel) upon stimulation with 100 µM carbachol (as shown in A). *P<0.05 vs control.

(C) Columns represent effect of pretreatments including control (open black, ER ATP; n= 10, ER Ca\textsuperscript{2+}; n= 52), and 2 µM oligomycin (red closed, ER ATP; n= 10, ER Ca\textsuperscript{2+}; n= 13) on ER ATP elevation (upper panel) and ER Ca\textsuperscript{2+} release (lower panel) upon stimulation with 2 µM ionomycin (as shown in A). *P<0.05 vs control.
3.4. Cell splitting and nutrient starvation affects Ca\[^{2+}\] coupled ER ATP elevation

In order to understand the regulation of ATP import into the ER, we hypothesized that Ca\[^{2+}\] coupled ER ATP increase might be affected by cell growth conditions as important cellular energy regulators such as AMPK and autophagy are modulated by cellular nutrient status and growth conditions of the cells [127]. As shown in Figs 22A, B on comparison of splitting the cells 72 hour or 20 hours before the measurement of Ca\[^{2+}\] coupled ER ATP signals had significant impact on the ER ATP increase. Interestingly, in these conditions the ER Ca\[^{2+}\] release kinetics was unaffected when cells were stimulated with ionomycin. The Ca\[^{2+}\] coupled ER ATP increase was about 50% higher when cells were splitted 20 hours before measurement (Figs 22A, B). In another set of experiments removal of glucose from cellular growth medium even for 4 minutes was enough to prevent Ca\[^{2+}\] coupled ER ATP rise (Fig 22C, D). These findings are quite significant in the sense that they indicate that in the HeLa cells which are cancer cell line, cell splitting conditions and removal of glucose tightly control the ER ATP transport.

![Fig 22: Effect of cell splitting time and nutrient starvation on Ca\[^{2+}\] coupled ER ATP signals](image-url)

Curves showing effect of splitting cells 20 hours (continuous black line, ER ATP; n= 26, ER Ca\[^{2+}\]; n= 18) or 72 hours (broken green line, ER ATP; n= 32, ER Ca\[^{2+}\]; n= 21) before measurement of ER ATP elevation (upper panel, measured with ERAT4.01) and ER Ca\[^{2+}\] release (lower panel, measured with D1ER) upon stimulation with 2 µM ionomycin in 0 Ca\[^{2+}\] containing experimental buffer. Curves are normalized average ratio signals ± SEM. *P<0.05 vs control. (B) Columns showing average ER ATP elevation (upper panel) upon stimulation of cells with 2 µM ionomycin when cells were splitted 72 hours (black open) and 20 hours (green closed) before measurement. Corresponding average ER Ca\[^{2+}\] depletion is shown (lower panel) upon stimulation of cells with 2 µM ionomycin when cells were splitted 72 hours (black open) or 20 hours (green closed) before measurement. Data was extracted...
from A. (C) Representative ER ATP elevation upon stimulation with 2 µM ionomycin in conditions when cell were continuously perfused with buffer containing 10 mM glucose (black curve) or glucose was removed for 4 minutes (orange curve). (D) Columns representing average ER ATP elevation when cells were continuously perfused with buffer containing 10 mM glucose (black open, n= 13) or glucose was removed for 4 minutes (orange column, n= 9). *P<0.05 vs without glucose.

In order to understand better the role of cell splitting and nutrient starvation, combination of cell splitting and glucose starvation was used to study Ca²⁺ coupled ER ATP rise. As shown in the Figs 23A, B, C, D splitting the cells 20 hours before measurement and then keeping them in experimental buffer consisting of 10 mM glucose gave a Ratio \( \frac{F_{535}/F_{480}}{R_0} \) of 1.14 for Ca²⁺ coupled ER ATP increase. In separate set of experiments splitting the cells 72 hours before measurement and then keeping them in experimental buffer consisting of 10 mM glucose gave a much lower Ratio \( \frac{F_{535}/F_{480}}{R_0} \) of 1.08 for Ca²⁺ coupled ER ATP elevation. In different set of experiments on splitting the cells 20 hours before measurement and keeping those in experimental buffer with 0 mM glucose gave Ratio \( \frac{F_{535}/F_{480}}{R_0} \) of 1.08 for Ca²⁺ coupled ER ATP rise. On the other hand upon splitting the cells 72 hours before measurement and then keeping those in 0 mM glucose gave Ratio \( \frac{F_{535}/F_{480}}{R_0} \) of only 1.03 for Ca²⁺ coupled ER ATP increase. In these experiments ER Ca²⁺ release was unaffected. To investigate the effect of long term removal of glucose from experimental buffer on Ca²⁺ coupled ER ATP increase, cells were glucose starved till 9.5 hours and Ca²⁺ coupled ER ATP response was measured at different time points (Fig 23E). As can be seen from Fig 23E till 3 hours of glucose starvation there was almost negligible increase in \([\text{ATP}]_{ER}\) upon Ca²⁺ release from ER. From 5 hours onwards Ca²⁺ coupled ER ATP response was gained and the rise of the ER ATP signals was similar to that of the controls which were kept in 10 mM glucose. This gain in ER ATP signal remained till the end of the last time point of 9.5 hours. These experiments revealed the metabolic flexibility of the cancer cells wherein the HeLa cells which primarily depend on glycolysis for fulfilling their energy needs could switch to alternative mode of energy generation of OXPHOS for transporting necessary amount of ATP to ER for it to carry out its biological functions. This finding was further confirmed by experiments wherein HeLa cells were glucose starved for a period of 5 hours and then upon stimulation of the cells with ionomycin in 0 Ca²⁺ and 0 mM glucose buffer lead to normal \([\text{ATP}]_{ER}\) rise while on pretreating these cells after glucose starvation with oligomycin for 20 minutes lead to almost complete abolishment of the ER ATP signals (Fig 23F).
Fig 23: Metabolic flexibility of the HeLa cancer cells can be detected using ERAT4.01. (A) Mean normalized ratio ± SEM for ER ATP signals measured 72 hours after cell splitting. Curves showing ER ATP elevation upon stimulation with 2 μM ionomycin in 0 Ca^{2+} containing experimental buffer when cells were splitted 72 hours before measurement and were either preincubated in loading buffer with presence (black curve, n= 32) or absence (blue broken curve, n= 32) of 10 mM glucose for 2-8 hours. *P<0.05 vs absent 10 mM glucose. (B) Bars showing average ER Ca^{2+} release (measured with D1ER) upon stimulation with 2 μM ionomycin in 0 Ca^{2+} containing experimental buffer. For experiments cells were splitted 72 hours before measurement and were either preincubated in loading buffer with presence (black open, n= 21) or absence (blue closed, n= 17) of 10 mM glucose for 2-8 hours. (C) Mean normalized ratio ± SEM for ER ATP signals measured 20 hours after cell splitting. Curves showing ER ATP elevation upon stimulation with 2 μM ionomycin in 0 Ca^{2+} containing experimental buffer when cells were splitted 20 hours before measurement and were either preincubated in loading buffer with presence (green broken line, n= 26) or absence (magenta broken line, n= 38) of 10 mM glucose for 2-8 hours. *P<0.05 vs absent 10 mM glucose. (D) Bars showing average ER Ca^{2+} release (measured with D1ER) upon stimulation with 2 μM ionomycin in 0 Ca^{2+} containing experimental buffer. For experiments cells were splitted 20 hours before measurement and were either preincubated in loading buffer with presence (green closed, n= 18) or absence (magenta closed, n= 18) of 10 mM glucose for 2-8 hours. (E) Time course demonstrating the effect of glucose starvation on the ER Ca^{2+} coupled ER ATP signal in response to 2 μM ionomycin using HeLa cells (n= 3–38). Respective signals were normalized to the average maximal delta ERAT4.01 ratio signal of cells that were kept in 10 mM glucose. (F) Normalized mean ER ATP signals ± SEM when cells were not pretreated (black line, n= 14) or pretreated with 2 μM oligomycin (red line, n= 26) for 20 minutes. The cells were then stimulated with 2 μM ionomycin in 0 Ca^{2+} and 0 mM glucose containing experimental buffer. For these experiments cells were kept without 10 mM glucose for 5 hours before start of experiments. *P<0.05 vs oligomycin untreated control.
3.4.1. Role of AMPK and Autophagy on Ca$^{2+}$ coupled ER ATP elevation

Experiments until now indicated that cell splitting and nutrient availability affected the Ca$^{2+}$ coupled ER ATP signals (Fig 22, Fig 23). It has been known that these conditions could stimulate energy stress sensor AMPK and autophagy [126]. Therefore expression of AMPK was checked in HeLa cell line using antibody against $\alpha$-AMPK (Fig 24 A). As shown in Fig 24 A, AMPK expressed nicely in this cell model and knock down of AMPK $\alpha/\beta$ lead to significant reduction at the protein level the amount of AMPK. Moreover, in terms of mRNA expression knock down of AMPK $\alpha/\beta$ worked quite efficiently with a reduction of about 50% in siAMPK $\alpha/\beta$ treated cells as compared to the controls (Fig 24 B).

Fig 24: Knock down efficiency of AMP activated protein kinase (AMPK). AMPK $\alpha/\beta$ is efficiently knocked down upon siAMPK $\alpha/\beta$ treatment. (A) Representative blot showing the knock down efficiency of AMPK $\alpha/\beta$. (B) Columns showing average knock down efficiency of AMPK $\alpha/\beta$ on treatment with siAMPK $\alpha/\beta$. (si control, closed black ; n= 3, siAMPK $\alpha/\beta$, red closed; n= 3). *P<0.05 vs 10 mM glucose.

Next set of experiments were designed to understand the role of AMPK on Ca$^{2+}$ coupled ER ATP elevation. As AMPK is highly active in the conditions of nutrient starvation (Kim J, 2013) Ca$^{2+}$ coupled ER ATP response was studied in both conditions of 10 mM and 0 mM glucose in experimental buffer (Figs 25A, B). As can be seen from Fig 25A and B, inhibition of AMPK $\alpha/\beta$ lead to a significant reduction in Ca$^{2+}$ coupled ER ATP elevation in both 10 mM and 0 mM glucose conditions. Although the control ER ATP signals were still higher in the 10 mM glucose condition as compared to that of 0 mM glucose conditions. On the other hand ER ATP rise was similar in siAMPK $\alpha/\beta$ knock down in both 10 mM and 0 mM glucose condition (Figs 25A, B). This result could be due to the fact that normally in the HeLa cells AMPK is not functional due to lack of upstream [136] LKB1 kinase in this cell line. As in the experiments involving knock down of the AMPK $\alpha/\beta$ there was clear decrease in the ER ATP signals it seems that AMPK might be constitutively expressed in this particular HeLa cell line. The AMPK activation was also seen in this cell line upon expressing AMPK biosensor where it was sensitive to changes
in AMPK activity upon chemical activation and inhibition in both 10 and 0 mM glucose (data not shown). Moreover, this is further validated by the fact that the level of increase in [ATP]_ER was similar in both 10 mM and 0 mM glucose conditions. Having said that in these experiments role of AMPK in [ATP]_ER was investigated and it might be that other energy regulators such as PI3K [129] could also be involved in the ER ATP regulation. Similar findings were also observed in terms of ER ATP rise upon the inhibition of AMPK using chemical compound C which is a specific inhibitor of AMPK (Figs 25C, D). In all the conditions tested the ER Ca^{2+} release was similar in 10 mM and 0 mM glucose condition.

**Fig 25:** Ca^{2+} coupled ER ATP transport machinery signals are highly sensitive to AMP activated protein kinase (AMPK). (A) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca^{2+} (lower panel) in control (black line, ER ATP; n= 30, ER Ca^{2+}; n= 14) and siAMPKα/β treated cells (red broken line, ER ATP; n= 36, ER Ca^{2+}; n= 19) upon stimulation with 2 µM ionomycin in 0 Ca^{2+} containing experimental buffer. In these experiments cells were kept in 10 mM glucose containing experimental buffer. *P<0.05 vs Control. (B) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca^{2+} (lower panel) in control (black line, ER ATP; n= 42, ER Ca^{2+}; n= 18) and siAMPKα/β treated cells (red broken line, ER ATP; n= 27, ER Ca^{2+}; n= 23) upon stimulation with 2 µM ionomycin in 0 Ca^{2+} containing experimental buffer. In these experiments cells were kept in 0 mM glucose containing experimental buffer. *P<0.05 vs Control. (C) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca^{2+} (lower panel) in control (black line, ER ATP; n= 31, ER Ca^{2+}; n= 14) and 20 µM compound C treated cells (red broken line, ER ATP; n= 27, ER Ca^{2+}; n= 17) upon stimulation with 2 µM ionomycin in 0 Ca^{2+} containing experimental buffer. In these experiments cells were kept in 10 mM glucose containing experimental buffer. *P<0.05 vs Control. (D) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca^{2+} (lower panel) in control (black line, ER ATP; n= 23, ER Ca^{2+}; n= 13) and 20 µM compound C treated cells (red broken line, ER ATP; n= 20, ER Ca^{2+}; n= 20) upon stimulation with 2 µM ionomycin in 0 Ca^{2+} containing experimental buffer. In these experiments cells were kept in 0 mM glucose containing experimental buffer. *P<0.05 vs Control.
It is well known that AMPK activates autophagy to stimulate production of substrates for energy production under conditions of energy stress [138]. Therefore in following set of experiments regulation by autophagy on Ca^{2+} coupled ER ATP rise was studied. In the initial set of experiments 3-MA an inhibitor of class III PI3K was used to prevent autophagosome formation [127]. As was seen in the case of the siRNA knock down of AMPK α/β, an inhibition of autophagy using 3-MA lead to significant reduction in the Ca^{2+} coupled ER ATP elevation in both 10 mM and 0 mM glucose condition (Figs 26A, B).

These results lead to the speculation that perhaps knocking down of some specific components of autophagosome formation might have significant effect on Ca^{2+} coupled ER ATP increase. Atg7 is an E1 like activating enzyme involved in the ubiquitin like systems and is required for cytoplasm to vacuole transport (Cvt) and autophagy [140]. While Vps34 is involved in membrane sorting processes in the cell and is important for phagophore elongation and recruitment of other Atg proteins to phagophore [129]. As these proteins are essential components of autophagosome mobilization, effect of knock down of these components on Ca^{2+} coupled ER ATP elevation was studied (Fig 27). As in the AMPK knock down experiments (Fig 25) cells were either kept in experimental buffer

**Fig 26: Effect of chemical Inhibition of autophagy on Ca^{2+} coupled ER ATP signals chemically inhibiting the autophagy reduces the Ca^{2+} coupled ER ATP signals in HeLa cells.**

(A) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca^{2+} (lower panel) in control (black line, ER ATP; n= 30, ER Ca^{2+}; n= 33) and 5 mM 3-MA treated cells (red broken line, ER ATP; n= 29, ER Ca^{2+}; n= 25) upon stimulation with 2 µM ionomycin in 0 Ca^{2+} containing experimental buffer. In these experiments cells were kept in 10 mM glucose containing experimental buffer. *P<0.05 vs Control.

(B) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca^{2+} (lower panel) in control (black line, ER ATP; n= 49, ER Ca^{2+}; n= 33) and 5 mM 3-MA treated cells (red broken line, ER ATP; n= 35, ER Ca^{2+}; n= 27) upon stimulation with 2 µM ionomycin in 0 Ca^{2+} containing experimental buffer. In these experiments cells were kept in 0 mM glucose containing experimental buffer. *P<0.05 vs Control.
consisting of 10 mM or 0 mM glucose and then effect of knock down of Atg7 and Vps34 was studied. As the data indicate (Fig 27) knock down of Atg7 or Vps34 has significant impact on the ER ATP signals. In both cases not withstanding weather the cells were kept in 10 mM or 0 mM glucose Ca\(^{2+}\) coupled ER ATP rise was significantly reduced on knock down of either Atg7 or Vps34 (Fig 27). These results lead to us to speculate that ER ATP is transported into the ER by specialized mechanism which might be tightly coupled to the ER Ca\(^{2+}\) homeostasis. Furthermore our results indicated that AMPK and autophagy might be playing important role in regulating the ATP transport into the ER.

Fig 27: Effect of knock down of Atg7 and Vps34 on Ca\(^{2+}\) coupled ER ATP response Knock down of Atg7 and Vps34 leads to a reduction in Ca\(^{2+}\) coupled ER ATP elevation in HeLa cells. (A) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca\(^{2+}\) (lower panel) in control (black line, ER ATP; n= 23, ER Ca\(^{2+}\); n= 35) and siAtg7 treated cells (red broken line, ER ATP; n= 40, ER Ca\(^{2+}\); n= 29) upon stimulation with 2 µM ionomycin in 0 Ca\(^{2+}\) containing experimental buffer. In these experiments cells were kept in 10 mM glucose containing experimental buffer. *P<0.05 vs Control. (B) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca\(^{2+}\) (lower panel) in control (black line, ER ATP; n= 26, ER Ca\(^{2+}\); n= 12) and siAtg7 treated cells (red broken line, ER ATP; n= 34, ER Ca\(^{2+}\); n= 11) upon stimulation with 2 µM ionomycin in 0 Ca\(^{2+}\) containing experimental buffer. In these experiments cells were kept in 0 mM glucose containing experimental buffer. *P<0.05 vs Control. (C) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca\(^{2+}\) (lower panel) in control (black line, ER ATP; n= 26, ER Ca\(^{2+}\); n= 40) and siVps34 treated cells (red broken line, ER ATP; n= 35, ER Ca\(^{2+}\); n= 14) upon stimulation with 2 µM ionomycin in 0 Ca\(^{2+}\) containing experimental buffer. In these experiments cells were kept in 10 mM glucose containing experimental buffer. *P<0.05 vs Control. (D) Average normalized ratio signals ± SEM of ER ATP (upper panel) and ER Ca\(^{2+}\) (lower panel) in control (black line, ER ATP; n= 8, ER Ca\(^{2+}\); n= 23) and siVps34 treated cells (red broken line, ER ATP; n= 9, ER Ca\(^{2+}\); n= 21) upon stimulation with 2 µM ionomycin in 0 Ca\(^{2+}\) containing experimental buffer. In these experiments cells were kept in 0 mM glucose containing experimental buffer. *P<0.05 vs Control.
3.5. Computational biology approach to identify putative components and regulators of ER ATP transport

Next step in the current study was to identify putative candidate proteins that might be playing a direct role in ATP import into the ER of mammalian system. As a first step ER ANT1 an only known ER ATP transporter in plant *Arabidopsis thaliana* was sequence aligned using BLAST with *Homo sapiens* as organism filter [124]. This analysis gave SLC25A family of proteins in humans as closest homologues to ER ANT1. In total there are about 100 known members of SLC25A family of proteins in humans out which 52 were finally selected for further analysis. The selection criteria for selection of the proteins were: (a) Protein had to be unique (b) protein in most cases had to be longest isoform (c) protein should have some functional relevance. The subcellular localization of these proteins was then predicted using NYCE software server [130]. Subcellular localization of these proteins was then plotted as a heatmap with clustering (**Fig 28**). Proteins were classified into 4 subclasses which included nuclear, nuclear cytoplasmic, cytoplasmic and extracellular. Moreover as NYCE cannot predict protein cellular locations in other organelle, proteins excluded from above mentioned classification were further considered separately for prediction of their cellular location. On the heatmap a threshold was set where proteins with NYCE score greater than 0.4 were kept in green to yellow zone, while the proteins having NYCE scores less than 0.4 had more orange to red color (**Fig 28**). For example proteins in the green zone in the nuclear classification would be predicted to be strongly localizing in the nuclear subcellular compartment. Proteins with NYCE scores less than 0.4 should most probably be localizing to other subcellular compartments such as mitochondria, ER, lysosome, endosomes, vesicles, golgi.
Fig 28: Heatmap of predicted subcellular localization of the SLC25A family of proteins (with clustering). The color range in the heatmap shows probability of finding particular protein (listed in right of heatmap) in given subcellular compartment (given in the bottom of the heatmap). The probability range from highest to lowest with colors green to red respectively. The values in the heatmap represent probability values for specific protein in particular subcellular compartment. The classification of proteins for subcellular compartment included nuclear, nuclear-cytoplasmic, cytoplasmic and extracellular.

Meanwhile a phylogenetic tree was prepared for human SLC25A family protein members (52 proteins) to predict the functions of the some of the unknown members of SLC25A protein family members which might be clustering in phylogenetic clade having family members with known function. The second reason for preparing the phylogenetic tree was to obtain more information in general about evolution of this family of proteins in humans. Specifically phylogenetic tree was prepared by correcting the alignments for gaps and
multiple substitutions and final unrooted phylogenetic tree was built using Ugene software (version: 1.13.2) [126] (Fig 29). Some of the tree clade members were annotated using information from human protein atlas database [131] (version:12) [129] and uniprot annotation (version: 16 April 2014) [142].

Fig 29: Phylogenetic unrooted tree of human SLC25A family of proteins with annotation of some of the family members. The 4 clad and a divergent protein groups were divided as Clad A, Clad B, Clad C, Clad D and Divergent 1. The details of the 5 individual group members are represented in the Table 6.
Table 6: Description of the protein members

<table>
<thead>
<tr>
<th>Group</th>
<th>Uniprot ID</th>
<th>Common name</th>
<th>Brief Annotation</th>
<th>Sub-cellular localization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clad A</td>
<td>P55916</td>
<td>SLC25A9</td>
<td>Proton leak across mito- membrane, uncouples mito-OXPHOS</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>P258</td>
<td>SLC25A7</td>
<td>Proton leak across mito- membrane, uncouples mito-OXPHOS</td>
<td>Mitochondria membrane</td>
</tr>
<tr>
<td></td>
<td>Q02978</td>
<td>SLC25A11</td>
<td>Catalyzes transport of 2-oxoglutarate across inner mito- membrane</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q9UBX3</td>
<td>SLC25A10</td>
<td>Transport of malonate, malate, succinate in exchange for phosphate, sulphate, sulphite, or thiosulfate across inner mito- membrane</td>
<td>Mitochondria membrane</td>
</tr>
<tr>
<td></td>
<td>O95847</td>
<td>SLC25A27</td>
<td>Proton leak across mito- membrane, uncouples mito-OXPHOS</td>
<td>Mitochondria membrane</td>
</tr>
<tr>
<td></td>
<td>O95258</td>
<td>SLC25A14</td>
<td>Causes proton leak across mito- membrane, uncouples mito-OXPHOS</td>
<td>Not known</td>
</tr>
<tr>
<td>Clad B</td>
<td>Q9UJS0</td>
<td>SLC25A13</td>
<td>Ca²⁺ dependent exchange of glutamate with mito- aspartate across mito- inner membrane</td>
<td>Mitochondria</td>
</tr>
<tr>
<td></td>
<td>O75746</td>
<td>SLC25A12</td>
<td>Ca²⁺ dependent exchange of glutamate with mito- aspartate across mito- inner membrane</td>
<td>Nucleus</td>
</tr>
<tr>
<td></td>
<td>Q9H936</td>
<td>SLC25A22</td>
<td>Mito- glutamate transporter</td>
<td>Mitochondria Nucleus</td>
</tr>
<tr>
<td></td>
<td>Q9H1K4</td>
<td>SLC25A18</td>
<td>Mito- glutamate transporter</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q70HW3</td>
<td>SLC25A26</td>
<td>Transport of S-adenosyl methionine (SAM) into mito</td>
<td>Mitochondria Nucleus</td>
</tr>
<tr>
<td></td>
<td>Q9NYZ2</td>
<td>SLC25A37</td>
<td>Fe⁺⁺ transport in mito</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q96A46</td>
<td>SLC25A28</td>
<td>Fe⁺⁺ transport in mito</td>
<td>Not known</td>
</tr>
<tr>
<td>Clad C</td>
<td>Q8WUT9</td>
<td>SLC25A43</td>
<td>Not known</td>
<td>Nucleus</td>
</tr>
<tr>
<td></td>
<td>Q9H0C2</td>
<td>SLC25A31</td>
<td>Catalyse exchange of cytosol ADP with mito ATP across mito inner membrane</td>
<td>Mitochondria</td>
</tr>
<tr>
<td></td>
<td>P12235</td>
<td>SLC25A4</td>
<td>Catalyse exchange of cytosol ADP with mito ATP across mito inner membrane</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>P05141</td>
<td>SLC25A5</td>
<td>Catalyse exchange of cytosol ADP with mito ATP across mito inner membrane</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>P12236</td>
<td>SLC25A6</td>
<td>Catalyse exchange of cytosol ADP with mito ATP across mito inner membrane</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q6KCM7</td>
<td>SLC25A25</td>
<td>Ca2+ dependent mito Mg ATP carrier.</td>
<td>Mitochondria Vesicles</td>
</tr>
<tr>
<td></td>
<td>Q9BV35</td>
<td>SLC25A23</td>
<td>Ca2+ dependent mito MgATP carrier.</td>
<td>Mitochondria</td>
</tr>
<tr>
<td></td>
<td>Q6NUK1</td>
<td>SLC25A24</td>
<td>Ca2+ dependent mito MgATP carrier.</td>
<td>Mitochondria</td>
</tr>
<tr>
<td></td>
<td>P16260</td>
<td>SLC25A16</td>
<td>Accumulation of coenzyme A in mito matrix</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q86VD7</td>
<td>SLC25A42</td>
<td>Mito ADP and mito ATP transporter</td>
<td>Mitochondria</td>
</tr>
<tr>
<td>Clad D</td>
<td>Q5H9E4</td>
<td>SLC25A53</td>
<td>Not known</td>
<td>Nucleus</td>
</tr>
<tr>
<td></td>
<td>Q600C1</td>
<td>SLC25A47</td>
<td>may catalyse proton leak from mito</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q8N413</td>
<td>SLC25A45</td>
<td>Not known</td>
<td>Nucleus</td>
</tr>
<tr>
<td></td>
<td>Q6ZT89</td>
<td>SLC25A48</td>
<td>Not known</td>
<td>Cytosol</td>
</tr>
<tr>
<td></td>
<td>Q8N8R3</td>
<td>SLC25A29</td>
<td>Palmitoylcarnitine, ornithine transport in mito</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>O43772</td>
<td>SLC25A20</td>
<td>Carnitine, acyl carnitine translocase in mito</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q9BX12</td>
<td>SLC25A2</td>
<td>Mito ornithine transport</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q9TY619</td>
<td>SLC25A15</td>
<td>Mito ornithine transport</td>
<td>Not known</td>
</tr>
<tr>
<td></td>
<td>Q9BQT8</td>
<td>SLC25A21</td>
<td>Mito C5-C7 oxodicarboxylate transport</td>
<td>Not known</td>
</tr>
<tr>
<td>Divergent</td>
<td>O43808</td>
<td>SLC25A17</td>
<td>ADP, AMP, ATP, FAD, FMN, NAD transport.</td>
<td>Peroxisomes Vesicles</td>
</tr>
</tbody>
</table>
Moreover, in this analysis heatmap containing information regarding subcellular localization information from NYCE using NYCE software server [143] was plotted side by side with the phylogenetic tree of human SLC25A family members (Fig 30) in order to have a clearer idea regarding the subcellular localization and protein function. In this family of proteins there are several protein members which have no known physiological function and thus were not considered for further analysis. It might well be that some of the protein members in this family of proteins might have some functions that might be related to transport of ATP into the ER. These members were not considered further as computationally it is not yet possible to predict the functions of these proteins and perhaps if a bigger phylogenetic tree is constructed involving more species that might give more clues about their putative function. From these approaches two proteins SLC25A17 and SLC25A25 were identified that were found to be localizing into mitochondria, endosomal vesicles and peroxisome [144][145].

![Fig 30: Representation of the phylogenetic tree with the predictive heatmap of subcellular location (without clustering) of SLC25A family of proteins. The color range in the heatmap shows probability of finding particular protein (listed in right of heatmap) in given subcellular location.](image-url)
compartment (given in the bottom of the heatmap). The probability range from highest to lowest with colors green to red respectively. The classification of proteins for subcellular compartment included nuclear, nuclear-cytoplasmic, cytoplasmic and extracellular.

From the SLC25A family proteins which were predicted to be to be in golgi, vesicles, endosomes, lysosomes, peroxisomes were taken and were used as seed inputs for building protein-protein interaction network with Hippie protein-protein interaction software (version:11, Oct 2013) [146] [147]. The protein interaction network was visualized using cytoscape software (version:3.1.0) [148] [149] and annotated using GO annotation [150] (data release:17 May 2014). On analyzing the protein-protein interaction network some key hub proteins were identified which included CLN3, CLN5, CLN6, ABCD2 and ABCD3. These proteins interact with several mitochondrial membrane and resident ER proteins. CLN3 physically interacts with mitochondrial OXPHOS complex III component ATP5L. It also interacts with components of ATP synthase subunit, ANT. Furthermore, it interacts ER resident proteins such as ECM29 which is a protein involved in ERAD. It also has direct physical interaction with FADS2, a component of fatty acid biosynthesis. Moreover, it has been shown to interact with ER chaperones such as calnexin and calreticulin (Fig 31). The second protein CLN5 directly interacts with ER proteins such as SERCA, PtdIns, calnexin and calreticulin. It has also been shown to interact with mitochondrial ANT1, ANT2, CDS2 a component of lipid biosynthesis, and SLC25A17 via SAM50 which might be required for assembly of mitochondrial outer membrane proteins. Proteins ABCD2 and ABCD3 which are presumably present in peroxisomes [149,151] interact with ER resident proteins such as TAP1, mitochondrial proteins such as TIDC1 which is components of mitochondrial ROS production and SURF1 which has been associated with mitochondrial COX complex. Now, we are validating physically some of these proteins and trying to understand their role if any in ER ATP transport.
**Fig 31: Protein-Protein interaction network for predicted proteins to be interacting with input proteins given to Hippie web server.** The interaction network depicts the proteins interacting with input proteins CLN3, CLN5, CLN6, SLC25A17, SLC25A25 generated by Hippie protein-protein interaction server. Nodes in red are mitochondria targeted proteins, while nodes depicted in blue are ER targeted proteins. Other proteins are vesicular proteins.
Discussions

4.1. Design of genetically encoded FRET based fluorescent ER targeted ATP biosensor

ATP is the energy currency of the cell and is used by the cell for the cellular metabolism such as in glycolysis and oxidative phosphorylation [152]. It acts a cofactor for several of enzymes for their activity [153]. Many of the ATP derived biomolecules such as cyclic AMP act as second messenger in many signal transduction processes [63]. Furthermore, polymerase incorporates ATP in nucleic acids during the process of gene transcription [154]. On the other hand ATP utilization in several subcellular compartments such as mitochondria [63], ER [155], golgi [78] have been deciphered to some degree. Among this organelle ER is one of least studied with respect to ATP transport, its regulation. Although a lot of studies have been carried with regard to ER protein synthesis, folding, secretion and degradation, less emphasis has been placed on the ATP requirement of these processes. In most clear cases it has been shown that chaperones such as BiP hydrolyses ATP for its protein folding function [156] the data is lacking with respect to quantitative estimations of ATP levels and its dynamic changes in the ER. Moreover, literature consists of little information regarding ER ATP transport mechanisms which have been suggested by some research groups to be occurring via passive diffusion [157]. Although, this argument seems quite counterintuitive as processes that have been shown or suggested to be consuming ATP in the ER are highly regulated processes and must in turn need ATP at right time and in right amount for their functioning. Therefore it seems quite plausible that a highly regulated ER ATP transport mechanism exists which might be regulating the level of ATP in the ER at any given time. Moreover, an understanding of ATP changes in the ER could itself open new paradigm for understanding physiological functions carried out in the ER. This could help in long run in understanding at a greater detail various pathological conditions involving deregulation in cellular metabolism and its effect on energy consuming processes carried out in the ER.

One of the major reasons for the lack of the knowledge regarding ER ATP changes seems to be due to lack of molecular tools which could be used in order to study ATP changes in ER in real time and in the single cell level. Another problem which is connected to above mentioned point is that ER is a complex organelle and therefore it has been difficult until now to really isolate it in its native state and study there the ATP levels even semi-
quantitatively. This situation has changed dramatically with the development of genetically encoded biosensors which could be used today for studying dynamic changes in particular analyte even at a sub organelle level. The second great development has been in the field of live cell imaging technologies which have really allowed one to monitor and measure changes in specific biomolecules in real time and at single live cells. The combination of these developments has been complemented with the field of computational data analysis for understanding at a meaningful level the interactions between varied cellular processes. With these advances in our hand we developed a genetically encoded FRET based ATP biosensor which we could localize into the ER (Fig 1C). One of the key advantages of FRET biosensors is their high signal-to-noise ratio. Secondly, it is possible to develop those using simpler molecular manipulations and finally they could easily be transiently transfected for the biosensor over-expression [35,63]. Moreover, recently Imamura et al, 2009 had developed a FRET based fluorescent ATP biosensor by which they could measure cytosolic, mitochondrial and nuclear ATP changes [38]. In this project we also used similar design principles to develop ER targeted genetically encoded FRET based fluorescent ATP biosensor. In this biosensor ECFP act as FRET donor while citrine act as the FRET acceptor. Furthermore, calreticulin signal sequence [42] at N-terminus, while KDEL sequence in the C-terminus of the biosensor allows the biosensor to target and remain in the lumen of the ER. The ATP binds to ATP binding domain from Bacillus subtilis [43] which is sandwiched between donor and acceptor fluorophore. The ATP binding to ATP binding domain leads to conformational change in the ATP binding domain and thus brings donor and acceptor fluorophores close to each other (Fig 1A). This leads to FRET from donor to acceptor fluorophore and therefore ATP change could be measured as a ratio between acceptor to donor wavelength emission. The earlier version of this sensor had mSECFP [158] as the donor fluorophore and cpVenus [37] as the acceptor fluorophore and had poor signal to noise ratio. Furthermore, it used to bleach pretty fast upon exposure to incident light and was not suitable for protocols with long exposure times. The change of donor and acceptor fluorophore as mentioned earlier lead to significant improvement in the signal to noise ratio of biosensor and it was much more stable at longer incident light exposure times. According to the literature reports this is the first biosensor of its kind which could be used to measure ATP dynamics in the ER at a high spatial and temporal resolution. Checking for the morphology of ER upon the expression of ER targeted ATP biosensor (ERAT4.01) revealed little gross structural changes in ER in the several cell types tested (Fig 1C).
Moreover, semi quantitatively calculating for the ER mistargeted cells showed relatively low number of miss-targeted cells (data not shown). Upon close examination of the ER targeted cells, it seems that some ER had fluorescent puncta formation which could mean that in some cells upon expression of the biosensor there might be activation of the ER stress pathways due to ATP binding to the ERAT4.01. Therefore further studies are needed in order to understand weather this fluorescent puncta formation is an artifact or it has some real physiological meaning.

4.2. Characterization of ERAT4.01

The ER has a highly oxidizing environment and contains proteins such as PDI which are associated with disulphide bond formation. Moreover high ratios of oxidized to reduced form of glutathione (GSSG/GSH) maintain the redox status of the ER. Many proteins that are transported via the secretory pathway of the ER frequently needs disulphide formation [159]. Furthermore, in a recent paper it was shown that ER redox environment is perturbed upon treatment with DTT which is a reducing agent and could in turn affect the protein folding efficiency in the ER [160]. In our experiments we wanted to check if ERAT4.01 is affected by ER redox perturbation. Therefore in the permeabilized cells effect of addition of MgATP on ERAT4.01signal was studied in the presence and absence of DTT (Fig 3). As can be seen from Fig 3A, ERAT4.01 signals were not significantly affected by the presence of DTT and the increase in FRET was majorly due to the addition of MgATP. In addition the slope and minimum signal observed with ERAT4.01 on treatment with 2-DG was much greater than that observed with DTT (Fig 3B). Taken together these results suggested that ERAT4.01 is not significantly affected by ER redox perturbations and thus could be used reproducibly for studying ER ATP homeostasis.

Once we could successfully target ERAT4.01 in the lumen of ER, we performed assays on our biosensor in order to functionally characterize our biosensor. For these assays we used mitochondrial targeted ATP biosensor mitAT1.03 [161] as our control in order to test the effect of similar perturbation on ERAT4.01. For these experiments in the HeLa cells we used 2-DG in perfusion in order to study the effect of inhibition of glycolysis in this cell type on mitochondrial and ER ATP levels in real time and at a single cell level. Upon inhibition of glycolysis mitochondrial ATP dropped faster with sharp kinetics while ER ATP levels fell with a slower kinetics following mitochondrial ATP depletion (Fig 7). On the other hand inhibition of oxidative phosphorylation using oligomycin in INS-1 832/13
cells lead to a strong and fast drop in mitochondrial ATP levels (measured with mitAT1.03) which was followed by ER ATP depletion (Fig 8). Interestingly addition of oligomycin to the HeLa cells did not significantly affect mitochondrial or ER ATP levels. Thus our sensor was able to distinguish ATP requirements of ER from varying energy generation sources and could detect changes in ATP levels at a high resolution. The time of effect for ER ATP depletion using 2-DG or oligomycin in HeLa and INS-1 832/13 cells respectively indicates that ER is highly sensitive to the mode of cellular ATP generation. Furthermore, in order to have an idea about the amount of ATP levels in several cell types, we obtained the minimum level of ATP in the ER in different cell types (Fig 6). This we achieved using the combination of 2-DG and oligomycin in order to inhibit both glycolysis and OXPHOS. Using this protocol we could obtain the minimum ATP levels, although in different cell types ATP drop with variable kinetics which indicated distinct ATP requirements and levels in diverse cell types. Our experiments using ERAT4.01 has opened up several interesting lines of research such as how ER is able to distinguish and import ATP generated by different modes into the ER. Furthermore, our data shows that ATP levels in the ER drop pretty fast upon inhibition of cellular ATP generation system. Thus, this ATP drop in ER is it due to local ATP consumption in the ER or is it a reflection of switching on of some ER stress pathway which might in turn affect some gene transcription and thus affect ATP levels in the ER? Thus, mechanistically if second point becomes true then concept of ER stress has to be seen at a very early level that is within minutes of ER stress causing perturbations. Finally, in all these pathways ATP changes in ER would have to be seen at a very dynamic level.

4.3. Inverse correlation between Ca^{2+} and ATP levels in the ER

It is well known that ER is the central storage organelle for Ca^{2+} in the cell [162]. Moreover, resident chaperones in the ER such as BiP requires ATP binding for the systematic release of peptide from the translocation complex [53]. Several other ER luminal chaperones such as Grp170, Grp94, calreticulin, PDI, ERp72 have been associated with nucleoside triphosphate and especially with ATP binding [163-165]. Moreover, several of the ubiquitin enzymes associated with ERAD need ATP hydrolysis for their proper functioning [55]. Since ATP and Ca^{2+} are so essential for ER, we speculated that there should be a correlation between these molecules. Therefore in order to understand relationship between ATP and Ca^{2+} in the ER upon the conditions of ER Ca^{2+} mobilization
we performed the experiments in order to release ER $\text{Ca}^{2+}$ by upon treatment with IP$_3$ generating agonists (Figs 9A, 10A) in HeLa and INS-1 832/13 cells. In order to see if ER $\text{Ca}^{2+}$ release via IP$_3$ generating agonists is the only mode by which ER ATP levels are elevated other methods of ER $\text{Ca}^{2+}$ mobilization such as inhibition of SERCA using BHQ and thapsigargin and use of $\text{Ca}^{2+}$ ionophore ionomycin were used. In all conditions and in the all cell types tested we observed an inverse correlation between ER $\text{Ca}^{2+}$ release corresponded with ATP elevation in the ER (Fig 11). At present we are unclear about the physiological meanings of this finding, but one could speculate that such an increase in ATP levels in the ER could be due to the unmasking of biological processes such as protein folding which require both of ATP and $\text{Ca}^{2+}$ for their functioning. Therefore this rise in ER ATP levels could mean that due to unavailability of the $\text{Ca}^{2+}$ in ER, the $[\text{ATP}]_{\text{ER}}$ consumption is reduced which in turn leads to an increase in ATP levels in the ER. On the other hand this ER ATP elevation could also mean an increased ATP transport into the ER upon ER $\text{Ca}^{2+}$ release thus might indicate a sophisticated ER ATP import mechanism. In this scenario it could be that upon ER $\text{Ca}^{2+}$ mobilization ER stress sets in which could allow fast phosphorylation and dephosphorylation events by specific kinases which might be part of ER ATP transport complex. These events thus could then transiently increase the amount of ATP transported into the ER which we observe as ER ATP increase upon ER $\text{Ca}^{2+}$ release. In the next set of experiments we tried to infer the role of cytosolic $\text{Ca}^{2+}$ on $[\text{ATP}]_{\text{ER}}$ changes. In these set of experiments we used INS-1 832/13 cells which strongly express L-type $\text{Ca}^{2+}$ channels. In these cells addition of high K$^+$ lead to an increase in the cytosolic $\text{Ca}^{2+}$ which in turn lead to a reduction in the ATP levels in the ER (Fig 12A). Upon measurement of the ER $\text{Ca}^{2+}$ in this condition we observed a rise in $\text{Ca}^{2+}$ levels indicating that it is the $\text{Ca}^{2+}$ in the ER which plays major part in ER ATP increase. Although it is very difficult to rule out completely the contribution of cytosolic $\text{Ca}^{2+}$ in this pathway as at the basal level ER is always releasing $\text{Ca}^{2+}$ via ER $\text{Ca}^{2+}$ leak channel such as via presenilin1 [124] (at a rate around 19-90 µM/ depending on the cell type). While on the other hand $\text{Ca}^{2+}$ is continuously taken up by SERCA [166] therefore it is difficult to distinguish very clearly between the ER and cytosolic $\text{Ca}^{2+}$ pools. Moreover, until now it has been quite difficult to really isolate ER from the cell in its native form and perform in test tube $\text{Ca}^{2+}$ and ATP correlation assays. We tried to perform permeabilization experiments in order to have intact ER in the cells but these treatments were either too harsh and thus could activate ER stress pathways or were not sufficient enough to perform meaningful experiments with them.
4.4. Ca\(^{2+}\) coupled ER ATP elevation needs continuous synthesis of ATP

Our experiments thus far indicated that under cell stimulation conditions Ca\(^{2+}\) coupled ER ATP elevation is highly conserved biological phenomenon, but it was still unclear how ATP rise occurred in the ER. To answer this question we pretreated INS-1 832/13 and HeLa cells in perfusion with oligomycin or 2-DG respectively in order to inhibit central cellular ATP generating systems in these cell types. Following which we stimulated our cells with IP\(_3\) generating agonists. In these experiments we observed even an inhibition of 3 minutes was sufficient to prevent a Ca\(^{2+}\) coupled ATP rise in the ER upon cell stimulation with IP\(_3\) generating agonist (Fig 13, 14). This result we found in both the cell types we tested. These results could mean that the ER needs a continuous supply of fresh ATP in order to carry out its biological functions and an inhibition of any these cellular ATP generating processes could affect ER ATP levels pretty fast. Importantly we did not observe a drop in the cytosolic ATP levels during the time course of the pretreatment. This might mean that there are very specific local hotspots on ER surface which could deliver ATP into the ER as and when it needs it. This could be akin to Ca\(^{2+}\) hotspots shown to be present on the ER surface [130]. This observation is boosted by the fact that cytosolic ATP did not drop to significant levels upon using the 2-DG, which caused severe reduction in the [ATP]\(_{ER}\) during the time course of the experiments in HeLa cells (data not shown). We also used cytosolic ATP sensors with variable affinities ranging from higher affinity to the one with lower affinity, none of the sensors could detect considerable drop in ATP levels in cytosol during the experimental protocol time. This could mean that cytosolic ATP pool is quite high and it could be used for maintenance of several housekeeping functions in cytosol. On the other hand local ATP fluxes on the surface of the ER could provide for the local and fast demand of ATP in the ER. In the further studies it would be important to distinguish mechanistically if these local ATP hotspots on the ER surface exist and provide ATP and what role do mitochondria play in this ER ATP transport. Other possibility could be that cytosol itself maintains a local ATP pools on surface of mitochondria and ER separately, thus provides ATP to these organelle as and when it is needed.
4.5. AMPK and Autophagy play important role in Ca\textsuperscript{2+} coupled ER ATP elevation

Until now our experiments revealed that ER needs continuous synthesis and transport of ATP for carrying out its biological functions, but we did not understand the regulation of such phenomenon. To understand whether global cellular energy levels affect the ATP transfer status into the ER, we performed experiments were glucose was removed for short term (4 minutes) (Figs 15C,D) and for longer times (up to 8-10 hours) (Fig 16E). Upon removal of glucose for short term it was observed that Ca\textsuperscript{2+} coupled ER ATP elevation was almost completely abolished. On the other hand removal of glucose for longer times for about 4 hours brought the Ca\textsuperscript{2+} coupled ER ATP rise to the control levels i.e. comparable to ER ATP elevation as was observed in 10 mM glucose containing condition (Fig 16E). Furthermore this ER ATP increase was inhibited by addition of oligomycin indicating the switching of metabolism in HeLa cells from glycolysis as predominant cellular energy generating mechanism to OXPHOS under the conditions of glucose starvation. Going through the literature we found a large amount of information regarding the regulation of global ATP levels by AMPK and autophagy under conditions of cellular energy stress conditions [53,162]. However, clear data does not exist regarding the control of local ATP changes in the ER by AMPK in the conditions of cellular energy stress. Furthermore data also exist regarding the regulation of AMPK by intracellular Ca\textsuperscript{2+} changes [163]. Therefore to understand if AMPK had any role in the regulation of ER ATP dynamics we checked the effect of knock down of AMPK on Ca\textsuperscript{2+} coupled ER ATP elevation (Figs 18A, B). Interestingly we observed highly significant reduction in Ca\textsuperscript{2+} coupled ER ATP increase in both the conditions of 10 mM and 0 mM glucose containing experimental buffers. Furthermore as AMPK tightly controls autophagy we checked if some key autophagy associated proteins also had an impact on Ca\textsuperscript{2+} coupled ER ATP rise. For this purpose we knocked down Atg7 and Vps34 two key proteins that are associated with autophagy [164,165] in the cells. In these conditions as well a clear reduction in the Ca\textsuperscript{2+} coupled ER ATP elevation was observed indicating that autophagy also plays a major role in ER ATP increase (Fig 20). These experiments gave indications regarding possible existence of a putative ER ATP import complex which might be affected by AMPK and autophagy. Further studies are needed in order to elucidate mechanistically role of AMPK and autophagy on ER ATP transport.
4.6. Computational biology approach for identifying putative components of ER ATP transport complex

Our experiments until now unveiled an existence of a tightly controlled ER ATP transport mechanism. Therefore as a first step we applied a computational approach to identify the putative components of the ER ATP transport complex. Until now a clear ER ATP transporter (ER-ANT1) has only been identified and characterized in the plant *Arabidopsis thaliana* [55]. Starting with this protein upon sequence alignment of this protein using BLASTP [124] we found several members of the SLC25A protein family of humans to be highly homologous to ER-ANT1. As a next step we used all known and unique protein members of the SLC25A family of human proteins and built a phylogenetic tree of the group members. The purpose of building such phylogenetic tree was twofold. First we wanted to understand the evolution of this family of proteins in humans and second to characterize putative SLC25A family members of unknown function. The second goal was to be fulfilled if we found new SLC25A family members of unknown function to be clustering in the same group of SLC25A family members with known function. An interesting thing with this family of proteins is that although these proteins have similar protein domain architecture several members of this protein family seem to localize in varied subcellular locations (Fig 21). Some of the group members such as SLC25A25, SLC25A17 have been shown to be localizing in multiple subcellular compartments such as in mitochondria and endosomal vesicles. In general these families of proteins have been classified as mitochondrial carrier family proteins [166]. Based on the subcellular localization data and the phylogenetic tree (Fig 23) we identified putative or known SLC25A family members belonging to lysosomes (SLC25A16, SLC25A2), peroxisomes (SLC25A21, SLC25A17), and vesicles and mitochondria (SLC25A25). Then in order to identify more protein members which might be interacting with these protein family members we built a protein-protein interaction network map using these SLC25A family proteins with Hippie protein interaction network software[130] (Fig 25). Such analysis gave proteins CLN3, CLN5, CLN6, ABCD2 and ABCD3 acting as central protein interaction hub members and seem to be interacting with several SLC25A family members including SLC25A4, SLC25A5, SLC25A6 which are well known mitochondrial ATP carrier proteins.
4.7. Summary and Conclusions

The ER is one of the central cellular organelle which is associated with processes such as protein synthesis, post translational modification, protein folding and protein degradation. Most of these processes need ATP to carry out these biological functions. Furthermore as ER is the main storage site of cellular Ca$^{2+}$ therefore the main objective of this study was to infer causal relationship between ER Ca$^{2+}$ and ER ATP homeostasis.

The key findings of this study are as described follows:

- A genetically encoded ER targeted FRET based fluorescent ATP biosensor was designed. The biosensor ERAT4.01 could be expressed nicely in several cell models and could to used to study ERATP homeostasis in living cells with high spatial and temporal resolution.
- Using ERAT4.01 and other probes we discovered an inverse correlation between ER Ca$^{2+}$ release and an ERATP elevation in several different cell models.
- Our findings indicate that ER needs continuous supply of ATP to carry out its biological functions. Subsequently an inhibition of central cellular ATP generation system such as glycolysis or OXPHOS leads to a prompt drop in ER ATP levels suggesting an existence of a dedicated highly regulated local ER ATP transport mechanism.
- The Ca$^{2+}$ coupled ER ATP rise is highly sensitive to AMPK and autophagy. Furthermore in cancer cells ER could fulfill its energy requirements by switching from glycolysis to OXPHOS as central ATP generating system under conditions of glucose starvation.
- Our computational biology based approach has identified some important candidates that might associated with or regulating ER ATP transport.

The current understanding of ER ATP homeostasis through these study is described in the schema below (Fig 32).
Fig 32: Diagramatic representation of the current findings explaining ER ATP homeostasis.

In further studies we are physically screening some of the identified putative candidate proteins, generating hypothesis and understanding mechanistic details of ER ATP transport process. Ultimately we think such studies could help us in understanding the physiological significance of this biological phenomenon and could pay way for novel drug discovery concepts.


3. Loibl M, Strahl S: **Protein O-mannosylation what we have learned from baker yeast.** *Biochim Biophys Acta* 2013, **1833**(11): 2438-2446.


33. Naghdi S, Waldeck-Weiermair MS, schai ISF, ser MP, Graier WF, Malli R: Mitochondrial Ca2+ uptake and not mitochondrial motility is required for STIM 1-


57. Kochendörfer KU, Then AR, Kearns BG, Bankaitis VA, Mayinger P: Sac1p plays a crucial role in microsomal ATP transport, which is distinct from its function in Golgi phospholipid metabolism. *EMBO J* 1999, 18(6): 1506-1515.


91. Tyagi S: **Imaging intracellular RNA distribution and dynamics in living cells.** *Nat Methods* 2009, **6**(5): 331-338.


120. Waldeck-Weiermair M, Alam MR, Khan MJ, Deak AT, Vishnu N, Karsten F, Imamura H, Graier WF, Malli R: Spatiotemporal Correlations between Cytosolic and


**Publications**


