Polyklonale Serum-Immunglobulin-Leichtketten als Biomarker für Atherosklerose bei Diabetes mellitus Typ 2

Eine retrospektive Datenauswertung einer prospektiven 2-Jahres-Studie an 97 PatientInnen.

Eingereicht von
Julian Augustin Christopher Zedler

Zur Erlangung des akademischen Grades
Doktor der gesamten Heilkunde
(Dr. med. univ.)
An der
Medizinischen Universität Graz

Ausgeführt an der
Klinik für Innere Medizin, Klinische Abteilung für Endokrinologie und Stoffwechsel

Unter der Anleitung von
Assoz. Prof. Priv.-Doz. Dr.med.univ. Harald Sourij
Dr. scient. Med. Norbert Tripolt

Graz, 22.02.2016
Eidesstattliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe, andere als die angegebenen Quellen nicht verwendet habe und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am 22.02.2016

Julian Augustin Christopher Zedler eh.
Inhaltsverzeichnis

1 Inhaltsverzeichnis ... 3

2 Abkürzungen .. 6

3 Abbildungsverzeichnis .. 8

4 Tabellenverzeichnis ... 9

5 Zusammenfassung .. 10

6 Abstract .. 11

7 Einleitung ... 12

7.1 Atherosklerose ... 13

7.2 Pathophysiologie ... 14

7.2.1 Diffusion von Lipiden ... 14

7.2.2 Ansammlung und Oxidation ... 15

7.2.3 Rekrutierung von Makrophagen .. 15

7.2.4 Schaumzellbildung ... 16

7.2.5 Einwanderung Glatter Muskelzellen .. 19

7.2.6 Nekrose und Lipidkernbildung .. 21

7.2.7 Thrombosierung und Plaque-Ruptur .. 22

7.3 Humorale und Zelluläre Immunantwort .. 23

7.3.1 T-Zell-Funktion .. 25

7.3.2 B-Zell-Linien und Funktion ... 26

7.3.3 B-Zellen und Atherosklerose ... 28
7.3.4 Immunglobuline ... 29

7.4 Diabetes und Atherosklerose .. 30

7.4.1 Epidemiologie ... 31

7.4.1.1 Koronare Herzkrankheiten .. 31

7.4.1.2 Periphere Arterielle Verschlusskrankheiten 31

7.4.1.3 Zerebrovaskuläre Erkrankungen 31

7.4.2 Pathologische Mechanismen diabetischer Vaskulopathien 32

7.4.2.1 Endothelzellen .. 32

7.4.2.2 Glatte Muskelzellen ... 33

7.4.2.3 Hämostase ... 33

7.5 Diagnostische Parameter .. 35

7.5.1 Karotis-Intima-Media-Dicke und Plaque-Aumaß 35

7.5.2 C-reaktives Protein ... 36

7.5.3 Polyklonale Freie Serum-Leichtketten 37

7.5.3.1 FLC und Nierenfunktion .. 38

7.5.3.2 FLC und Kardiovaskuläre Krankheiten 39

7.5.3.3 FLC und Diabetes .. 39

8 Methoden ... 40

8.1 PatientInnen .. 40

8.2 Studiendesign ... 41

8.3 Labor-Messungen ... 41

8.3.1 Serum-Leichtketten (FLC) .. 41
8.3.2 High Sensitive C-reactive Protein (hsCRP) ... 41
8.4 Karotis-Intima-Media-Dicke (cIMT) .. 41
8.5 B-Score .. 42
8.6 Statistische Analyse ... 42
9 Ergebnisse .. 43
9.1 Baseline-Charakteristika ... 43
9.2 Korrelation und Regression .. 45
10 Diskussion ... 50
10.1 Serum Leichtketten und Atherosklerose .. 51
10.2 Serum Leichtketten und C-reaktives Protein ... 51
10.3 Studienkohorte und Studienablauf .. 52
10.4 Ausblick .. 52
11 Literaturverzeichnis ... 54
Abkürzungen

<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Ausdruck</th>
</tr>
</thead>
<tbody>
<tr>
<td>AcLDL</td>
<td>Acetylated low density lipoprotein</td>
</tr>
<tr>
<td>AGE</td>
<td>Advanced Glycation Endproduct</td>
</tr>
<tr>
<td>ALCAM</td>
<td>Leucocyte-cell adhesion molecules</td>
</tr>
<tr>
<td>AP-1</td>
<td>Activator protein 1</td>
</tr>
<tr>
<td>ATLO</td>
<td>Aortic tertiary lymphatic organ</td>
</tr>
<tr>
<td>BCRs</td>
<td>B-Zell Rezeptoren</td>
</tr>
<tr>
<td>CCL-2</td>
<td>Monocyte chemotactic protein 1</td>
</tr>
<tr>
<td>CDR</td>
<td>Complementarity determining region</td>
</tr>
<tr>
<td>CRP</td>
<td>C-Reaktives-Protein</td>
</tr>
<tr>
<td>CVD</td>
<td>Cardiovascular diseases</td>
</tr>
<tr>
<td>DM2</td>
<td>Diabetes Mellitus Typ 2</td>
</tr>
<tr>
<td>eGFR</td>
<td>Geschätzte Glomeruläre Filtrationsrate mittels MDRD</td>
</tr>
<tr>
<td>eNOS</td>
<td>Endotheliale Stickstoffmonoxid-Synthase</td>
</tr>
<tr>
<td>GFR</td>
<td>Glomeruläre Filtrationsrate</td>
</tr>
<tr>
<td>GM-CSF</td>
<td>Granulocyte-macrophage colony stimulating factor</td>
</tr>
<tr>
<td>GpIb</td>
<td>Glykoprotein 1b</td>
</tr>
<tr>
<td>Hb1AC</td>
<td>Glykohämoglobin</td>
</tr>
<tr>
<td>HDL</td>
<td>High density lipoprotein</td>
</tr>
<tr>
<td>hsCRP</td>
<td>High Sensitive CRP</td>
</tr>
<tr>
<td>ICAM-1</td>
<td>Intercellular adhesion molecule 1</td>
</tr>
<tr>
<td>Ig</td>
<td>Immunglobulin</td>
</tr>
<tr>
<td>IL</td>
<td>Interleukin</td>
</tr>
<tr>
<td>ILC2</td>
<td>Typ 2 angeborene lymphoide Zelle</td>
</tr>
<tr>
<td>IRA B cell</td>
<td>Innate response activator B cell</td>
</tr>
<tr>
<td>KHK</td>
<td>Koronare Herzkrankheiten</td>
</tr>
<tr>
<td>LDL</td>
<td>Low Density Lipoprotein</td>
</tr>
<tr>
<td>LOX-1</td>
<td>Lectin-like oxidized low density lipoprotein receptor-1</td>
</tr>
<tr>
<td>MARCO</td>
<td>Macrophage receptor with collagenous structure</td>
</tr>
<tr>
<td>Abbreviation</td>
<td>Full Form</td>
</tr>
<tr>
<td>--------------</td>
<td>-----------</td>
</tr>
<tr>
<td>MCP-1</td>
<td>Monocyte chemotactic protein 1</td>
</tr>
<tr>
<td>M-CSF</td>
<td>Macrophage colony stimulating factor</td>
</tr>
<tr>
<td>MDRD</td>
<td>Modification of Diet in Renal Disease</td>
</tr>
<tr>
<td>MMP</td>
<td>Matrixmetalloproteinasen</td>
</tr>
<tr>
<td>NCD</td>
<td>Noncommunicable Diseases</td>
</tr>
<tr>
<td>NFκB</td>
<td>Nuclear factor κB</td>
</tr>
<tr>
<td>NK</td>
<td>Natürliche Killerzellen</td>
</tr>
<tr>
<td>NO</td>
<td>Stickstoffmonoxid</td>
</tr>
<tr>
<td>oxLDL</td>
<td>Oxidiertes Low Density Lipoprotein</td>
</tr>
<tr>
<td>PAI</td>
<td>Plasminogenaktivatorinhibitoren</td>
</tr>
<tr>
<td>PAVK</td>
<td>Periphere Arterielle Verschlusskrankheit</td>
</tr>
<tr>
<td>PDGF</td>
<td>Plateled-derived growth factor</td>
</tr>
<tr>
<td>PI-3-K</td>
<td>Phosphoinositid-3-Kinasen</td>
</tr>
<tr>
<td>PK1</td>
<td>Proteinkinase 1</td>
</tr>
<tr>
<td>PRR</td>
<td>Pattern Recognition Receptors</td>
</tr>
<tr>
<td>RA</td>
<td>Rheumatoide Arthritis</td>
</tr>
<tr>
<td>ROS</td>
<td>Reaktive Sauerstoffspezies</td>
</tr>
<tr>
<td>SLE</td>
<td>Systemischer Lupus Erythematoses</td>
</tr>
<tr>
<td>SR-A</td>
<td>Scavenger receptor class A</td>
</tr>
<tr>
<td>TCRs</td>
<td>T-Zell Rezptoren</td>
</tr>
<tr>
<td>TNFα</td>
<td>Tumor Nekrose Faktor α</td>
</tr>
<tr>
<td>Treg</td>
<td>Regulatorische T-Zellen</td>
</tr>
<tr>
<td>VCAM-1</td>
<td>Vascular cell adhesion molecule 1</td>
</tr>
<tr>
<td>VLA-4</td>
<td>Very late antigen 4</td>
</tr>
<tr>
<td>VLDL</td>
<td>Very low density lipoprotein</td>
</tr>
<tr>
<td>VWF</td>
<td>Von Willebrand Faktor</td>
</tr>
<tr>
<td>WHO</td>
<td>Weltgesundheitsorganisation</td>
</tr>
<tr>
<td>ZNS</td>
<td>Zentrales Nervensystem</td>
</tr>
</tbody>
</table>
3 Abbildungsverzeichnis

Abbildung 1 Bildung eines Fatty Streaks...19
Abbildung 2 Voranschreiten der Läsion ...20
Abbildung 3 Lipidkernbildung und Plaque-Ruptur ..22
Abbildung 4 Schematischer Überblick eines Querschnitts durch eine Atherom23
Abbildung 5 Angeborene und erworbene zelluläre Antwort25
Abbildung 6 Potentielle Rolle von ApoB-Proteinen als Verstärker der Immunantwort bei Atherosklerose...26
Abbildung 7 Rolle von B Zellen in Athersklerotischen Plaques29
Abbildung 8 Auswirkung der chronischen Hyperglykämie auf die Atherogenese35
Abbildung 9 Studienübersicht ...43
Abbildung 10 Häufigkeitsverteilung freier Leichtketten ..45
Abbildung 11 Korrelation der Mittelwerte cFLC und B-Score am Zeitpunkt Baseline47
Abbildung 12 Korrelation der Mittelwerte cFLC mit dem Plaque-Ausmaß geordnet in 3 Kategorien ..48
Abbildung 13 Korrelation der cIMT und cFLC Baseline nach Pearson48
Abbildung 16 Matrix der Korrelationen cIMT und cFLC unter Berücksichtigung des Rauchverhaltens und Geschlechts ..49
Abbildung 17 Korrelationen der beiden Entzündungsmarker cFLC und hsCRP zu Baseline und nach 3 Monaten...50
4 Tabellenverzeichnis

Tabelle 1 Verschieden Scavenger-Rezeptoren und deren Rolle bei Kardiovaskulären Krankheiten .. 17

Tabelle 2 Mittelwert/Median der Werte für die Konzentration freie Serum Leichtketten 38

Tabelle 3 Kriterien für die Kategorisierung des B-Scores in 3 Gruppen .. 42

Tabelle 4 Baseline-Charakteristika der Studienpopulation .. 44

Tabelle 5 Korrelationsanalysen cFLC Baseline ... 46

Tabelle 6 Korrelationsanalysen cIMT Baseline ... 46
5 Zusammenfassung

Methoden: Diese prospektive, offene 2-Jahres-Studie wurde an 97 PatientInnen mit Diabetes Typ 2 durchgeführt. Die PatientInnen hatten mindestens zwei unzureichend behandelte kardiovaskuläre Risikofaktoren d.h. HbA1c > 7.5% (58 mmol/mol); LDL-Cholesterin > 3.1 mmol/l oder Blutdruck > 140/90 mmHg. Die Daten für cFLC und hoch sensitivem C-reaktivem-Protein (hsCRP) waren für insgesamt 75 PatientInnen verfügbar. Die Intima-Media-Dicke und der B-Score der Karotiden wurde mittels Ultraschall gemessen. Die Auswertung der Daten erfolgte mittels deskriptiver und explorativer Datenanalyse.

Ergebnisse: Es wurden signifikant positive Korrelationen zwischen cFLC und B-Score (r=0,38; p=0,001) ebenso wie zwischen cFLC und hsCRP (r=0,35; p=0,002) beobachtet. Die Korrelation zwischen cIMT und cFLC war statistisch nicht signifikant (r=0,22; p= 0,058).

Fazit: Die Ergebnisse dieser Studie zeigen eine Assoziation und einen beachtenswerten Anstieg der cFLC-Plasma-Spiegeln und dem Plaque-Ausmaß, gemessen mittels B-Score. Es sind jedoch weitere Analysen mit größeren Fallzahlen notwendig, um diese Assoziation zwischen freien Leichtketten im Plasma und Atherosklerose zu bestätigen.
6 Abstract

Background: Patients with Type 2 Diabetes Mellitus have a 2-4-fold higher risk of cardiovascular events compared to the non-diabetic population. Atherosclerosis and plaque formation is strongly influenced by different arms of the immune system, including B-lymphocytes. Recent investigations suggest combined free serum light chains (cFLC) as a potential biomarker for cardiovascular events. Therefore, our aim was to assess the association of cFLC with carotid atherosclerosis measured by ultrasound, a well-established surrogate parameter for cardiovascular events.

Methods: We performed a cross-sectional analysis in data from a prospective single center 2-year study of 97 patients with type 2 diabetes and at least two insufficient treated cardiovascular risk factors, i.e. HbA1c > 7.5% (58 mmol/mol); LDL-cholesterol >3.1 mmol/l or blood pressure >140/90 mmHg. Complete data on cFLC, high sensitive C-reactive protein (hsCRP) was available for 75 subjects. Carotid intima media thickness (CIMT) and a B-score to quantify plaque burden was determined according to the Asymptomatic Carotid Artery Plaque Study protocol (ACAPS). The data was compared using explorative statistical analysis.

Results: Significant positive correlations between cFLC and the B-score (r=0.38; p=0.001) as well as cFLC and hsCRP (r= 0.35; p=0.002) were observed. The correlation between cIMT and cFLC (r=0.22; p= 0.058) did not reach statistical significance.

Conclusion: In our study, cFLC was associated with carotid atherosclerosis, measured by the B-score in subjects with type 2 diabetes. However, further larger trials need to confirm this association and determine whether cFLC could be used as a potential biomarker for atherosclerosis and future cardiovascular risk in patients with type 2 diabetes.
7 Einleitung

Vorsorge und Aufklärung spielen bei der Bekämpfung von NCDs die weitaus wichtigste Rolle. Dort wo diese Maßnahmen jedoch nicht greifen, ist die frühe Erkennung essentiell um therapeutische Maßnahmen einzuleiten, regelmäßige Kontrollen einzuführen und gravierende Komplikationen zu vermeiden oder zu verzögern. In diesem Zusammenhang richtet sich der Fokus wissenschaftlicher Arbeiten auf dem Gebiet der Früherkennung auf sogenannte Biomarker, deren Messung auf biologische, pathologische und pharmakologische Prozesse im Körper zurückgeführt sind.

Es gibt bereits eine Fülle an neuen Biomarker als Kandidaten für die Früherkennung auf dem Gebiet der kardiovaskulären Krankheiten und des Diabetes mellitus. Viele haben bisher keinen signifikanten Vorteil gegenüber bisher im klinischen Alltag gängigen Risikoscores, die auf einfach verfügbaren und etablierten Risikofaktoren wie Blutdruck, Gewicht oder älteren Biomarkern wie Blutfetten oder glykosieltem Hämoglobin (HbA1C) basieren. Bei weltweit immer höherer Inzidenz von NCDs sind aber zusätzlich weitere Marker vonnöten, um der Komplexität dieser Krankheiten gerecht zu werden, und vor allem um vorhandene Risiko-Scores zu erweitern und deren Vorhersagequalität zu verbessern.

Der Erforschung von Markern auf dem Gebiet der NCDs liegt der Gedanke zugrunde, dass eine frühe Erkennung und konsekutive frühe Behandlung nicht nur einen Nutzen für den Einzeln in sich bergen, sondern auch einen gesellschaftlichen und volkswirtschaftlichen

Die pathophysiologischen Mechanismen, die als Grundlage zur effektiven Erforschung neuer Früherkennungsmethoden nötig sind, und noch nicht gänzlich verstanden werden, sind Gegenstand aktueller Forschung. Diese pathophysiologischen Grundlagen zu verstehen ist von großer Wichtigkeit für die Erkennung und Prävention von Gefäßereignissen, denn der plötzliche Herztod und der akute Myokardinfarkt sind die initialen Manifestationen die bei mehr als der Hälfte der Individuen mit Atherosklerose auftreten (8).

In den letzten Jahren ist die Tatsache, dass Atherosklerose vor allem ein entzündliches Geschehen ist, durch Grundlagenforschung und Klinische Evidenz bestätigt worden. Entzündung gilt als Fundamentaler Vorgang bei Atherosklerose im Menschen (9).

Aus dem Wissen um die entzündliche Natur der Atherosklerose und die unverkennbare Verkettung mit chronischer Hyperglykämie generierte sich für diese Arbeit die Hypothese, dass polyclonale Antikörper eine entscheidende Rolle in der Atherogenese bzw. der Prädiktion von Atherosklerose und nachfolgender vaskulärer Komplikationen spielen.

7.1 Atherosklerose

Als klassische Definition der Atherosklerose kann die chronische, systemische Verdickung von Arterien durch Einlagerung von oxidiertem LDL in deren Wand und die darauf folgenden entzündlichen Komplikationen angesehen werden (10). Sie ist als eine Unterkategorie der Arteriosklerose anzusehen, die als Versteifung der Arterienwände beschrieben wird und zusätzlich die Einlagerung von Thromben und Kalk in den Gefäßen beinhaltet (11). Die
Komplikationen der Atherosklerose, allem voran Herzinfarkte, Schlaganfälle oder akute Gefäßverschlüsse in anderen Strombahnen sind die meist verbreiteten Todesursachen in der westlichen Welt, so werden ihnen jährlich fast 17 Millionen Todesfälle angerechnet (1, 12, 13).

Die klassische Definition wird der heutigen Sicht auf den äußerst komplexen immunologischen Prozess der Atherogenese jedoch nicht gerecht, denn Atherosklerose ist weit mehr als die bloße Ansammlung von Lipiden, so wie es über viele Jahrzehnte gelehrt wurde. Der heutige Fokus richtet sich vor allem auf die entzündliche Komponente und die komplizierten Immunologischen Prozesse die sie begleiten.

Seit der Etablierung der Biochemie, der Zellforschung und Molekularbiologie vor über 50 Jahren ist das schwierige Bild dieser chronischen Erkrankung immer genauer geworden. Zwar wusste schon Rudolf Virchow von der entzündlichen Komponente der Atherosklerose (9) jedoch wurde sein Konzept erst über ein Jahrhundert später wiederaufgenommen, die heute als gesichert gilt.

7.2 Pathophysiologie

Heutzutage wird eher von der endothelialen Dysfunktion als initiales Geschehen in der Kaskade ausgegangen (15).

7.2.1 Diffusion von Lipiden

Als Initialveränderung der histologischen Zusammensetzung auf dem Weg zu atherosklerotischen Plaques wird die Einlagerung von Lipiden, Cholesterin und LDL in die arterielle Intima beschrieben. Sie beginnt schon in der frühen Jugend und Kindheit(16). LDL-Partikel bestehen aus einem hydrophoben Kern von Cholesterinestern und Triglyceriden,
ummantelt von einer Schicht an polaren Phospholipiden, freiem Cholesterin und dem LDL-spezifischem APO Protein, dem apoB100.

Dieser Prozess entsteht einerseits durch die Aufnahme in die Intima über den spezifischen LDL-Rezeptor, jedoch hauptsächlich durch freie Diffusion in die Endothelschicht. Durch diese Diffusionsprozesse sind folglich jene Punkte im arteriellen Kreislauf für Einlagerungen prädestiniert, an denen die Flussgeschwindigkeit und Scherkräfte herabgesetzt sind(17) oder bei denen die Wand-Elastizität herabgesetzt und der retrograde Blutfluss verlangsamt ist(18).

7.2.2 Ansammlung und Oxidation

Als weitere Folge verminderten Flusses, haften sich sukzessive Lipoproteine niederer Dichte an die in der Intimamatrix befindliche Proteoglykan an und verbinden sich zu sehr oxidierungsanfälligen Komplexen (19). Die Oxidation des LDL-Cholesterins wird unter anderem durch reaktive Sauerstoffspezies (ROS) bewerkstelligt, die sich primär an Doppelbindungen ungesättigter Reste von Triglyceriden, Phospholipiden und Cholesterinen estern binden (20). Diese posttranslangtionalen Proteinveränderungen verändern in weiterer Folge deren immunogene Eigenschaften (21).

Bei der Oxidierung sind Veränderungen von Ladung, Größe, Lipid-Inhalt und weiteren Eigenschaften, die das ganze Partikel betreffen, zu bemerken. Oxidiertes LDL ist somit nicht eine exakt definierte molekulare Spezies, sondern präsentiert sich vielmehr als ein breites Spektrum an Partikeln mit einer großen Heterogenität an posttranslangtionalen Tertiärstrukturen der Oberflächenproteinen. Es entsteht ein sehr heterogenes Gemenge an Partikeln die eine Vielzahl an entzündungsreaktionen hervorrufen können und ein weitaus komplexeres Bild der Atherogenese liefern.

7.2.3 Rekrutierung von Makrophagen

Obwohl die Rekrutierung von Monozyten in der Gefäßwand und deren Veränderung zu Makrophagen eine Initial protektive Funktion hat indem sie zytotoxisches und entzündungsförderndes oxLDL oder apoptotische Zellen aufnehmen, führt die progressive Anhäufung dieser Makrophagen schlussendlich zur Entwicklung atherosklerotischer Läsionen.

Diese Akkumulation mononuklearer Phagozyten hängt nicht nur von dem Influx ab der durch Adhäsionsmoleküle und Chemokine vermittelt wird, sondern auch von deren Retention innerhalb des Plaques. Hier wurde vor allem Netrin-1 als Paracrines Molekül in Läsionen isoliert, das durch Rezeptorbindung (UNC5b) Entzündungszellen im Atherom zurückhält (29).

7.2.4 Schaumzellbildung

Die Besonderheit atheromatöser Läsionen ist die große Anhäufung von sogenannten Schaumzellen ("foam cells"), die eine massive Menge an verschiedenen Cholesterinester in sich aufweisen. Die ungehemmte und konzentrationsunabhängige Aufnahme dieser Cholesterin-Verbindungen wird nicht von den klassischen LDL-Rezeptoren sondern hauptsächlich durch spezifisch modifiziertes LDL-erkennende Scavenger-Rezeptoren auf der Oberfläche von Makrophagen vermittelt, eine Klasse an PRR’s aus verschiedenen
Transmembranproteinen bestehend (30, 31). Da diese Rezeptor-Familie für viele komplexe Funktionen verantwortlich ist, von der Aufnahme von modifiziertem LDL und Zelldetritus bis zur lysosomalen Verarbeitung dieser Partikel, sind Scavenger Rezeptoren von besonderer Bedeutung für die weitere Entwicklung atherosklerotischer Läsionen (Vgl. Tabelle 1).

<table>
<thead>
<tr>
<th>Klasse</th>
<th>Scavenger receptor</th>
<th>Beteiligung an Kardiovaskulären Krankheiten?</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>SR-A</td>
<td>OxLDL-Aufnahme durch Makrophagen</td>
</tr>
<tr>
<td>A</td>
<td>MARCO</td>
<td>Nein</td>
</tr>
<tr>
<td>B</td>
<td>SR-B</td>
<td>Reduziert Atherosklerose durch Cholesterin-Rücktransport von HDL</td>
</tr>
<tr>
<td>B</td>
<td>CD36</td>
<td>OxLDL-Aufnahme durch Makrophagen. Führt zur Bildung von Schaumzellen</td>
</tr>
<tr>
<td>E</td>
<td>LOX-1</td>
<td>OxLDL uptake in Endothelzellen. Führt zur Endothelzellendysfunktion</td>
</tr>
<tr>
<td>F</td>
<td>SRECI/II</td>
<td>Aufnahme von niedrigen Mengen an AcLDL</td>
</tr>
<tr>
<td>G</td>
<td>SR-PSOX</td>
<td>OxLDL-Aufnahme durch Makrophagen</td>
</tr>
</tbody>
</table>

Tabelle 1 Verschieden Scavenger-Rezeptoren und deren Rolle bei Kardiovaskulären Krankheiten. Adaptiert nach Stephen et. al. (32)

Zu der fokalen Anhäufung von Schaumzellen, die im Widerspruch zur systemischen Theorie der Atherosklerose steht, ist in Kapitel 7.2.1 die Theorie der mechanischen Scherkräfte angesprochen worden. Eine weitere Theorie verbindet lokal erhöhte Scherkkräfte mit der Verminderung vasoaktiver Substanzen die Funktion und Struktur der Gefäße regulieren (24).

Einmal in der Intima angekommen, und nach deren Weiterbildung zu Schaumzellen, besitzen Makrophagen die Fähigkeit sich in den etablierten Läsionen zu mehren. Dies wird hauptsächlich durch hämatopoetische Wachstumsfaktoren wie M-CSF, GM-CSF und Interleukin-3 vermittelt (31).

Dieser bisher beschriebene Prozess der entstehenden Atheromata ist bis zu diesem Zeitpunkt tatsächlich noch umkehrbar, da diese nur aus Lipid-beladenen Makrophagen bestehen und noch nicht komplexe Bestandteile wie Fibrosierungen, Thrombosierungen, Nekrosen oder Kalzifizierungen enthalten. Der Prozess der Umkehrung ist noch nicht vollkommen verstanden und wird kontrovers diskutiert.

Die Rolle mononukleärer Phagozyten als aktive Effektoren wurde spätestens mit der Entdeckung Makrophagen-Emittierter Zytokine, wie CCL-2, IL-1 und TNF-α, bestätigt und wird als pathologischer Mechanismus der angeborenen Immunität beschrieben. Es steht der entzündliche Prozess im Vordergrund der durch diese Zytokine angestoßen wird. Der
Komplexe Immunologische Prozess und vor allem die Rolle zellvermittelter Immunantwort durch die B-Zell-Reihe, soll in Kapitel 7.3.2 genauer beschrieben werden.

7.2.5 Einwanderung Glatter Muskelzellen
Die reversiblen Anfangsstadien der Atherombildung sind durch endotheliale Dysfunktion, sowie Leukozyten-Rekrutierung und -Ansammlung bestimmt. Der weitere Übergang von einem simplen Fatty Streak in eine komplexere Läsion ist durch die Einwanderung glatter Muskelzellen in die Intima gekennzeichnet, die einen großen Einfluss auf die Homöostase des normalen Blutflusses besitzen. Durch Kontraktion und Entspannung gelangt eine Kontrolle des Flusses in den verschiedenen arteriellen Gefäßbetten bis in die Arteriolen (38). In größeren Gefäßen, können jedoch abnorme Muskelzellen in atherosklerotischen Läsionen zu Vasospasmen führen, was oft zu Verschlimmerung von Stenosen und größeren Komplikationen führt (39). Glatte Muskelzellen produzieren außerdem eine Fülle an Stoffen für die extrazelluläre Matrix und tragen damit zu einem großen Teil zur Entwicklung und
Komplikation atherosklerotischer Plaques bei. Sie migrieren und proliferieren auch gerne und tragen somit zur Bildung hyperplastischer Foci in der Intima bei, was oft vor allem bei der Restenosierung bei Stent-Implantationen zu beobachten ist und ein großes Problem darstellt (40).

Die Einwanderung glatter Muskelzellen aus der Tunica media arterieller Gefäße wird auch mittlerweile kontrovers diskutiert. Es wird eine pathologische Einwanderung und Vermehrung glatter Muskelzellen aus ansässigen Stammzellen in fortgeschrittenen Atheromata beschrieben (41, 42). Da aber viele glatte Muskelzellen in entwickelnden Atheromata sich stark von Zellen der normalen Tunica Media unterscheiden wird eine hämatogene Streuung Glatter Muskelzellen nicht ausgeschlossen (43).

Abbildung 2 Voranschreiten der Läsion und Einwanderung glatter Muskelzellen in die Intima. Stimulierung glatter Muskelzellen durch Th1 Zellen durch IFNγ. Stimulierung von Makrophagendurch TH2 Zellen die in weiterer Folge sich ansammeln und absterben (12)

7.2.6 Nekrose und Lipidkernbildung

Im weiteren Entwicklungsverlauf atherosklerotischer Läsionen gehen immer mehr Schaumzellen, Makrophagen und glatte Muskelzellen durch Apoptose zugrunde. Vor allem das Absterben von Makrophagen durch Überladung mit Cholesterin-Kristallen führt zu sogenannten Lipidkernen (9), während die Apoptose glatter Muskelzellen zu weiteren Komplikationen des Herdes und Bildung sogenannter Nekrotischer Kerne führt (44). Wie oben erwähnt, führt das Absterben glatter Muskelzellen zur verminderten Produktion von Kollagen und zur Destabilisierung Fibröser Plaques. Auch sammeln sich einige dieser abgestorbenen Zellen durch eine gestörte Efferozytose in den Plaques an und tragen dadurch zur weiteren Progression der Inflammation bei (50).
7.2.7 Thrombosierung und Plaque-Ruptur

Alle oben genannte Phasen der Atherogenese entwickeln sich über viele Jahre, während derer die betroffenen Personen meistens keine Symptome zeigen. Nachdem jedoch die Plaque-Belastung die Fähigkeiten der Arterie, sich zu remodelieren, übersteigt, fängt das Wachstum in das Lumen-Innere an. Ab einem Stenosierungsgrad von ca. 60% kann ein Defizit des Blutflusses bei erhöhtem Sauerstoffbedarf entstehen, was klinisch vor allem zur Erstsymptomatik der stabilen Angina Pectoris bzw. Claudicatio Intermittens führt.

In vielen Fällen Myokardialer Infarzierung oder transienten ischämischen Attacken gibt es jedoch keine Historie stabiler Angina pectoris. Dies führt zur Annahme, dass akute ischämisch kardiale oder zerebrale Vorfälle einer Thrombosierung durch Ruptur nicht-kritischer Stenosen folgen (51). Für zwei Drittel der Thromben ist die Ruptur des fibrösen Plaques verantwortlich. Dazu kommt die superfizielle Erosion der Intima, die für ein Viertel der Fälle verantwortlich ist, und bei Frauen häufiger vorkommt als bei Männern (52, 53).

Abbildung 3 Lipidkernbildung, Destrukturierung der Matrix durch MMP’s, luminales Anheften von Thrombozyten an die Intimaläsion. Die Verwandlung glatter Muskelzellen zu Schaumzellen und die Bildung Nekrotischer Kerne führt zur Plaque-Ruptur (12).

Die finale Ruptur des Plaques resultiert sicherlich aus einem Ungleichgewicht zwischen den mechanischen Adhäsionskräften und den Kräften die auf den Plaque wirken. So wurde schon erwähnt, dass die hauptsächliche Stabilisierung des Atheroms durch extrazelluläre Kollagene
verantwortet wird, und deren Fehlregulation höchstwahrscheinlich die Hauptverantwortung für die Plaqueruptur trägt. Dazu gehören das weiter unten erwähnte T-Zell-Emittierte IFN-γ, und katabole Enzyme wie MMPs oder Cathepsin die in der Schlussphase der Atherombildung von Makrophagen überexprimiert werden (54). Die Destabilisierung ist somit letztendlich vor allem Immunvermittelt und geht von Entzündungsmechanismen der Endothelzellen aus, die weitreichende Folgen für den ganzen Plaque besitzen.

Abbildung 4 Schematischer Überblick eines Querschnitts durch eine Atherom. Tertiäre Lymphorganen (ATLOs) liegen der Adventitia großer Gefäße an (Siehe Kapitel 7.3.3)(55)

7.3 Humorale und Zelluläre Immunantwort

Die Begründung der modernen Immunologie durch Paul Ehrlich und Karl Landsteiner, durch die Antikörper erstmals identifiziert werden konnten, sowie die Entdeckung durch Astrid Fagraeus, dass Antikörper von Plasmazellen gebildet werden, haben die Basis der zellvermittelten Immunologie begründet. Experimentelle Erkenntnisse Immunologischer Vorgänge bei Atherosklerose und moderne bildgebende Verfahren sind so weit fortgeschritten, dass heute diese sehr komplizierten Immunologischen Prozesse der Atherosklerose größtenteils identifiziert und beschrieben werden können.

Vor allem die Arbeit an genetisch modifizierten Mäusen die Atherosklerose und Hypercholesterinämie entwickeln, wie Apoe-/- oder Ldlr-/- Mäusen hat exzellente
Möglichkeiten eröffnet neue Erkenntnisse zellulärer und humoraler Abwehr bei Atherosklerose zu gewinnen (20).

7.3.1 T-Zell-Funktion

Über die Rolle von TH2-Zellen und TH17-Zellen gibt es bisweilen Kontroverse Studien (20), und die initialen euphorischen Theorien der atheroprotektiven Funktion von TH2-Zellen konnte noch nicht bestätigt werden (57).

Die Rolle von NKT-Zellen bei Atherosklerose hat in den letzten Jahren zunehmende Beachtung gefunden. Sie sind eine weitere Brücke zwischen angeborenem und adaptivem Immunsystem. Ihnen wird ein pro-atherogener Effekt in frühen Atherosklerose-Plaques zugeschrieben, was sie zu Forschungsobjekten therapeutischer Intervention macht (57).

Abbildung 6 Potentielle Rolle von ApoB-Proteinen als Verstärker der Immunantwort bei Atherosklerose (20)

7.3.2 B-Zell-Linien und Funktion

meist zusammen mit den T-Zellen in den Follikel, proliferieren dort und entwickeln ihre Affinität zu IgG, IgA oder IgE Antikörpern (65).

7.3.3 B-Zellen und Atherosklerose

B-Zellen und die immunglobuline die sie produzieren, fördern die Pathologien verschiedener chronischer Autoimmunkrankheiten wie RA oder SLE (74). PatientInnen mit diesen Autoimmunkrankheiten weisen interesanterweise erhöhte KHK-Risikowerte auf hauptsächlich als Komplikation der Atherosklerose (75). Der unabhängige Zusammenhang von klassischen Framingham Risikofaktoren mit beschleunigter Atherosklerose-Bildung bei PatientInnen mit SLE und RA, legt die Vermutung nahe, dass das Fortschreiten der Atherosklerose bei diesen PatientInnen ein Resultat erhöhter Entzündung und veränderter Immunantwort,-wie zum Beispiel der Antikörperproduktion – ist (65, 76).

Man kann daraus den Schluss ziehen, dass die verschiedenen B-Zell-Untergruppen unterschiedliche modulierende Effekte auf den Prozess der Atherosklerose haben, die je nach Lokalisation, Fortschritt sowie vielen anderen Faktoren die Dynamik der Atherosklerose beeinflussen. Dieses “Doppelschneidige Schwert” (20) der einerseits atheroprotektiven, andererseits atherogenetischen Rolle von B-Zell-Subpopulationen ist auch in den kürzlich entdeckten ATLOs von Bedeutung (55) und Inhalt gegenwärtiger Forschung. Einige Theorien über die Pathophysiologie sind jedoch distanziert zu betrachten. So ist zum Beispiel eine

7.3.4 Immunglobuline
Immunglobuline sind heterodimere Proteine, die alle dieselbe Struktur besitzen: 2 Schwerketten und 2 Leichtketten die zu einer Y-förmigen Struktur zusammengesetzt werden.
Sie können funktionell in variable Domänen (die an Antigene binden) und konstante Domänen (die genaue Effektor-Funktionen haben, wie die Komplementaktivierung) aufgeteilt werden. Die variablen Domänen werden durch eine Serie an äußerst komplexen Gen-Neuanordnungen und somatischen Hypermutationen nach Antigenkontakt erschaffen. Jede variable Domäne kann in 3 Regionen eingeteilt werden (CDRs), die unglaublich vielfältig sein können und die extreme Passgenauigkeit an das Antigen ausmachen. Die 3 CDRs der schweren Kette sind mit den 3 CDRs der Leichtkette gepaart und formen die Antigen-Bindungsstelle des Immunglobulins. Die schweren Ketten besitzen 5 Klassen an Konstanten Domänen, die letztendlich Ihre Beschreibung ausmachen: IgA, IgM, IgG, IgE und IgD.

In der aktuellen Literatur wurden verschiedene Immunglobuline bereits in Assoziation mit Atherosklerose beschrieben. Unter anderem Antiendotheliale Antikörper (AECA) (78), IgE (79) und vor allem Anti ox-LDL (80) (81, 82). Es wurden auch anti-Neu5Gc Antikörper im Zusammenhang mit Atherosklerose beschrieben (83).

7.4 Diabetes und Atherosklerose

Als Diabetes wird die Gruppe an Pathologien bezeichnet, die entweder durch eine unzureichende Produktion von Insulin oder durch das fehlende Ansprechen der Zellen auf Insulin gekennzeichnet sind und schlussendlich zu einer chronischen Hyperglykämie führen (84). Diabetes wird typischerweise klassifiziert als: Typ 1, gekennzeichnet durch absoluten Insulinmangel. Typ 2, gekennzeichnet durch eine Insulinresistenz und relativen Insulinmangel, der ca. 90% aller Diabeteserkrankungen betrifft(84). Aufgrund der höheren Morbidität und Mortalität sowie der zunehmenden epidemiologischen Bedeutung des Diabetes Typ 2 galt der Fokus dieser Arbeit ausschließlich dieser Erkrankung.

Diabetes ist eine der meist verbreiteten chronischen Krankheiten der Welt, die 2010 ca. 285 Millionen Menschen betraf (85). Die steigende Prävalenz von Diabetes Typ 2 ist vor allem bedingt durch ein ansteigendes Populationsalter und Übergewicht, und es wird geschätzt, dass bis zum Jahr 2035 mehr als 592 Millionen Menschen weltweit davon betroffen sein werden (5).
Die diabetischen Spätkomplikationen gliedern sich in makrovaskuläre Komplikationen, die als Hauptursache für Morbidität und Mortalität im Zusammenhang mit Diabetes beschrieben werden, und mikrovaskuläre Komplikationen, wie Retinopathien, Nephropathien und Neuropathien (86). Vor allem unter Typ-2-DiabetikerInnen gilt die Assoziation mit vaskulären Ereignissen als gefestigt und ist heute ein fester Bestandteil multifaktorieller therapeutischer Intervention bei Atherosklerose-PatientInnen (3, 87).

7.4.1 Epidemiologie
Die Klinische Manifestation der Atherosklerose ereignet sich hauptsächlich in drei Gefäßgebieten: Herzkranzgefäße, untere Extremitäten, und extrakranielle Karotiden. Sie ist in allen drei mit Diabetes assoziiert, so sterben bis zu 50% aller DiabetikerInnen an einer Kardiovaskulären Krankheit (88).

7.4.1.1 Koronare Herzkrankheiten
PatientInnen mit Diabetes Typ 2 haben ein 2-4-fach erhöhtes Risiko an einer Koronaren Herzkrankheit zu erkranken (89). Ebenso verschlechtert Diabetes die Prognose bei akutem Koronarsyndrom. Bei instabiler Angina wurden in verschiedenen Studien, im Vergleich zu Kontrollgruppen ohne Diabetes, eine erhöhte Mortalität, Komplikationsrate und Reinfarzierung festgestellt (90, 91).

7.4.1.2 Periphere Arterielle Verschlusskrankheiten
Die Wahrscheinlichkeit für DiabetikerInnen an einer PAVK zu leiden ist ebenfalls 2 bis 4 Mal höher (92). Die Diabetesdauer korreliert mit der Inzidenz und dem Ausmaß der Verschlusskrankheit und verändert meist den Verlauf der PAVK, da z.B. DiabetespatientInnen öfter an einer infrapoplitealen Verkalkung der Arterien leiden als nicht-DiabetikerInnen (93). PatientInnen mit Diabetes entwickeln auch öfter eine symptomatische Form der PAVK, die sogenannte Claudicatio Intermittens, und müssen sich öfter einer Amputation der betroffenen Extremität unterziehen (94).

7.4.1.3 Zerebrovaskuläre Erkrankungen
Ebenso wie für die Entwicklung der koronaren und peripheren Gefäße ist Diabetes ein Risikofaktor für die Gefäß-Kalzifizierung der zentralnervösen Gefäßstrombahn, da es auch bei
diesen PatientInnen zu einer erhöhten Inzidenz von extrakraniellen Karotis-Atheromata führt (95) und eine bis zu 5 Mal höhere Prävalenz für kalzifizierte Karotiden aufweisen (96).

Das Risiko einer zerebralen Ischämie ist bei Diabetes PatientInnen bis zu 400% höher (97) und tritt im Schnitt 3 Jahre früher auf als bei Nicht-DiabetikerInnen (98). Letztendlich bedingt ein dauerhaft erhöhter Glucosespiegel die gesamt- wie auch die infarktverbundene Sterblichkeitsrate erheblich (98, 99).

7.4.2 *Pathologische Mechanismen diabetischer Vaskulopathien*

Der ungewöhnliche metabolische Zustand des Diabetes ebnet den Weg zu einer arteriellen Dysfunktion. Die entscheidenden Faktoren die eine Zelluläre Entgleisung bedingen sind vor allem die chronische Hyperglykämie, die Dislipidämie und die Insulinresistenz, die wiederum mit weiteren Risikofaktoren wie arteriellem Hypertonus und Hyperkoagulabilität einhergeht. Diese Faktoren schaffen eine noch höhere Anfälligkeit der Arterien für atherosklerotische Veränderungen, und verschlechtern zudem den Zustand aller beteiligten Zellen und deren Funktionen, was letztendlich zu einer noch schnelleren Progression der Atherosklerose führt.

7.4.2.1 *Endothelzellen*

Zusätzlich zu der Einleitung und Förderung von Atherogenese begünstigt die chronische Hyperglykämie außerdem die spätere Plaque-Instabilität und dessen Folgekrankheiten. Diabetische Endothelzellen emittieren Zytokine die eine Synthese von Kollagen durch glatte Muskelzellen vermindern (108). Die Vermehrung von MMP's ist außerdem ausreichend gesichert (109) was in weiterer Folge zu Kollagenabnahme in der Extrazellulären Matrix führt und die mechanische Stabilität eines Plaques beeinträchtigt.

7.4.2.2 Glatte Muskelzellen

Die Atherogenität glatter Muskelzellen steigt ebenfalls durch einen zu hohen Plasmaglukosewert. Einer der wichtigen Angriffspunkte der Atherosklerose ist die vasomotorische Funktion. PatientInnen mit Diabetes Typ 2 besitzen einer verminderte NO-assoziierte Vasodilatation, was letztendlich auf die gestörte Zellfunktion glatter Muskelzellen zurückzuführen sein kann (100). Die Erhöhung von vasokonstriktiven Mediatoren wie vor allem von Endothelin-1 ist ein weiterer wichtiger atherogenetischer Prozess, der durch eine Insulin-vermittelte erhöhte Genexpression vermittelt oder durch eine vermehrte Stimulierung von “advanced glycation end products” (AGES) Rezeptoren sein könnte (110).

7.4.2.3 Hämostase

Bei DiabetespatientInnen ist die komplette Hämostase beeinträchtig (112). Anomalien in der Thrombozytenfunktion können das Voranschreiten der Atherosklerose verschlimmern und

Zusammengefasst haben chronisch hyperglykämische PatientInnen eine höhere intrinsische Aktivierung und eine reduzierte Hemmung der Thrombozyten, was das potentiell erhöhte Thrombotische Potential von DiabetespatientInnen erklärt (86).

7.5 Diagnostische Parameter

7.5.1 Karotis-Intima-Media-Dicke und Plaque-Ausmaß

Die Bestimmung der Intima-Media-Dicke der beiden Karotiden mittels B-Mode Ultraschall ist eine sehr gute Methode zur Bestimmung des Plaque-Ausmaßes und zur Erkennung von

Es gibt mehrere Vorteile der Messung der cIMT als Prognostikum. Die Messung ist nicht-invasiv, billig, sofort anwendbar und sie birgt keinerlei Gefahr für die Probanden. Deshalb ist die cIMT in den letzten Jahrzehnten ein weit verbreiteter Parameter für das Fortschreiten von kardiovaskulären Krankheiten in klinischen Studien geworden. Es sind mittlerweile große Mengen an Daten über die Verteilung der cIMT in der Bevölkerung für Männer und Frauen zwischen 25 und 85 Jahren bekannt (127). Demnach werden cIMT-Messungen >1.20 mm als nicht mehr normal angesehen, während das Fortschreiten der Atherosklerose auf 0.02 bis 0.05 mm pro Jahr geschätzt wird (128). Obwohl gängige Guidelines widersprüchliche Empfehlungen abgeben was den Nutzen der Bildgebung asymptomatischer Atherosklerose betrifft, spricht sich die Mehrheit der Guidelines für die Benutzung der Karotis IMT- und Plaque-Messung mittels Ultraschall aus (129).

Die Messung des Plaque Ausmaßes (Plaque Burden) ist eine weitere sehr gute Quantifizierungsmethode von Atherosklerose, mit teils größerer prognostische Aussagekraft hinsichtlich kardiovaskulärer Ereignisse. Hier zeigte die groß angelegte Tromsø-Studie, dass die gesamte Plaque-Fläche (total plaque area TPA) einen weitaus stärkeren Voraussagewert bei Myokardinfarkten und Apoplexie als die cIMT hat (130) was durch eine später durchgeführte Metaanalyse bestätigt werden konnte (131).

7.5.2 C-reaktives Protein

Plasma C-Reaktives Protein (CRP) ist ein unspezifisches Akut-Phase-Protein das leicht zu messen ist. Es ist ein gut beschriebener Marker der angeborenen Immunität und ist weit verbreitêt in der klinischen Diagnostik akuter und chronischer Entzündungen. Es wird diskutiert ob die Messung von CRP-Werten einen prädiktiven Wert für kardiovaskuläre
Ereignisse hat. Ridker und Libby sehen in der Messung von hoch-sensitivem CRP (hsCRP) im Plasma einen sehr guten Messpartner im Zusammenhang mit Plasmalipiden und anderen Framingham-basierten Kriterien da IL-6 zwar in der Kausalitätskette der Atherosklerose vorkommt, jedoch schwer zu analysieren ist (132); hsCRP ist hingegen nicht kausal, jedoch sehr gut zu messen und hat sich als guter Marker für das frühe Staging und den Fortschritt der Karotis-Atherosklerose herausgestellt (133) und korreliert stark mit immunhistochemischen Färbungs-Intensitäten fibröser Plaques und demakutem Koronarsyndrom (134). Erhöhte hsCRP-Level treten weiterhin auf bei PatientInnen mit Diabetes Typ 1 oder adipösen PatientInnen, sowie bei diesen PatientInnen auch ein Zusammenhang mit der cIMT-Progression der Karotiden vermutet wird (135, 136).

7.5.3 Polyklonale Freie Serum-Leichtketten

In Menschen herrscht eine Prävalenz des κ-Isotyps mit ca. 60%. Es ist bis heute noch keinen funktionellen Unterschied zwischen κ und λ Antikörpern bekannt, somit wird den Leichtketten nur ein Diversifizierungseffekt für Immunglobuline zugeschrieben, aber eben kein funktioneller (137).

Während der Zusammensetzung von Immunglobulinen im Endoplasmatischem Retikulum fällt ein Überschuss an Leichtketten von ca. 500mg pro Tag an. Exzessives Material wird in den Blutkreislauf abgegeben und renal ausgeschieden, was letztendlich zu einer mittleren Verweildauer von 2-6 Stunden im Blut resultiert (138).

Serum Leichtketten werden vor allem als Marker bei Monoklonalen Gammopathien eingesetzt. Dabei steigt meist eine der beiden Leichtketten-Arten an, und eine verschobene κ/λ-Ratio ist zu bemerken. Erhöhte polyklonale Serum-Leichtketten haben hingegen eine annähernd normale Ratio, was auf eine erhöhte Produktion im Rahmen von gesunden Immunantworten bei Infektionen, Entzündungen oder Autoimmunkrankheiten, auf eine verminderte renale Clearance oder auf eine Kombination beider Faktoren hindeutet (139).

<table>
<thead>
<tr>
<th>Gesundes Serum</th>
<th>Mittelwert</th>
<th>Median</th>
<th>95%-Referenzintervall</th>
</tr>
</thead>
<tbody>
<tr>
<td>κ-FLC</td>
<td>8.4 mg/L</td>
<td>7.3 mg/L</td>
<td>3.3-19.4</td>
</tr>
<tr>
<td>λ-FLC</td>
<td>13.4 mg/L</td>
<td>12.7 mg/L</td>
<td>5.7-26.3</td>
</tr>
<tr>
<td>κ/λ Ratio</td>
<td>0.63</td>
<td>0.59</td>
<td>0.3-1.65</td>
</tr>
</tbody>
</table>

Tabelle 2 Mittelwert/Median der Werte für die Konzentration freie Serum Leichtketten bei 282 PatientInnen
(140)

Katzmann et al. beobachteten, dass κ-FLC Konzentrationen generell niedriger sind als λ, was zu einem Median der Ratio von 0.59 führt. Der Grund dafür ist die Balance aus Produktion und Elimination. Es befinden sich im Serum ca. doppelt so viele κ-produzierende Zellen als λ-produzierende. Da aber κ-Moleküle monomerisch mit ca. 25 kDa sind und λ-Moleküle dimerisch mit 50 kDa ist deren renale Clearence schneller und ihre Serum-Halbwertszeit kürzer bei gesunden Individuen (140). Weitere Studien kamen zu ähnlichen Ergebnissen (141, 142).

7.5.3.1 FLC und Nierenfunktion

Bei zunehmender Niereninsuffizienz ändern sich die Mechanismen der FLC-Clearance. Bei vermindelter GFR, nimmt die Clearance ab und die Elimination findet über das Retikulo-Endotheliale-System statt, das keine Präferenz für eines der Moleküle zeigt (143). Somit nähern sich bei sinkender GFR die Konzentrationen der beiden Leichtketten an und deren Präsenz ist mehr ihrer Produktion als der Elimination geschuldet. Als Folge verändert sich bei einer geringen Zahl an PatientInnen die κ/λ-Ratio bei polyklonaler Produktion auf einen Wert >1 (144).
7.5.3.2 FLC und Kardiovaskuläre Krankheiten

7.5.3.3 FLC und Diabetes
Schon seit vielen Jahrzehnten wird die FLC/Albumin-Ratio bei DM1-PatientInnen als früher Indikator der diabetischen Nephropathie genutzt (147). Die Tatsache, dass dabei die Serum-Werte annähernd normal blieben impliziert die renale Ursache der erhöhten FLC Ausscheidung und nicht die erhöhte Produktion (148). In neueren Studien wurden bei PatientInnen mit DM2 und Übergewicht höhere Werte im Urin im Vergleich zu nicht-adipösen TDM2 PatientInnen gefunden (149).

Bei Studien an Konzentrationen im Serum und Urin von DM2-PatientInnen um den Nutzen für die Früherkennung diabetischer Nephropathien abzuschätzen hatten PatientInnen schon erhöhte cFLC-Werte in Urin und Serum vor der Entwicklung einer renalen Dysfunktion (144). Dabei hatten Süd-Ost-Asiatische PatientInnen einen global höheren Serum FLC-Wert als Kaukische bei insgesamt normaler eGFR, eine Beobachtung die auf eine höhere Produktion und Entzündungsrate zurückgeführt werden kann (144).

In einer weiteren Studie an derselben DM2-Population innerhalb eines 2-Jahres Follow up wurden höhere cFLC-Werte bei PatientInnen mit einem Kardiovaskulären Event festgestellt. Nach multivariaten Analysen blieb ein Serum-Wert >57.2 mg/L signifikant mit dem Auftreten kardiovaskulärer Ereignisse verbunden (150) sogar nach Korrektur für Alter, Behandlung, Diabetesdauer und Albumin-Kreatinin-Ratio.
8 Methoden

8.1 PatientInnen

Es wurden PatientInnen im Alter zwischen 45 und 75 Jahre mit diagnostiziertem Diabetes Mellitus Typ 2 und mindestens zwei der folgenden Merkmale in die Studie eingeschlossen: LDL-Cholesterin > 120 mg/dl, Blutdruck > 140/90 mmHg, HbA1c > 7,5%. Bei den Messgrößen kam es nicht auf der Behandlungs geschichte der PatientInnen an.

8.2 Studiendesign

Eine Übersicht über den detaillierten Studienablauf ist aus Abbildung 9 zu entnehmen.

8.3 Labor-Messungen

8.3.1 Serum-Leichtketten (FLC)
Freie Serum Leichtketten (λ+κ) wurden mittels Nephelometrie (Freelite®, The Binding Site Group, Birmingham, UK) durch eine BN™ II Analysesystem (Siemens Healthcare Diagnostics, Marburg, Germany) aus gefrorerem Plasma gemessen.

8.3.2 High Sensitive C-reactive Protein (hsCRP)
Hoch sensitives C-Reaktives Protein (hsCRP) wurde mittels particle-enhanced immunoturbimetric assay (Roche Diagnostics GmbH, Mannheim, Germany) gemessen, mit einer Nachweisgrenze von 0.1mg/l.

8.4 Karotis-Intima-Media-Dicke (cIMT)
8.5 B-Score

B-Score Kategorien

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Keine Veränderung und Wand-Dicke > 1mm</td>
</tr>
<tr>
<td>2</td>
<td>Plaque < 2 mm</td>
</tr>
<tr>
<td>3</td>
<td>Plaque > 2 mm und kompletten Lumen-Verschluss</td>
</tr>
</tbody>
</table>

Tabelle 3 Kriterien für die Kategorisierung des B-Scores in 3 Gruppen

8.6 Statistische Analyse

ANOVA. Beim Vergleich der Mittelwerte wurde ein Post-Hoc-Test durchgeführt (Duncan-Test und Bonferoni-Test).

9 Ergebnisse

9.1 Baseline-Charakteristika
Basisdaten der Studienpopulation

<table>
<thead>
<tr>
<th>Männer</th>
<th>49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frauen</td>
<td>26</td>
</tr>
<tr>
<td>Körpergröße (cm)</td>
<td>170 ±9.8</td>
</tr>
<tr>
<td>Körpergewicht (Kg)</td>
<td>91.6 ±15.4</td>
</tr>
<tr>
<td>Alter (Jahre)</td>
<td>59.4 ±8</td>
</tr>
<tr>
<td>Systolischer Blutdruck (mmHg)</td>
<td>152 (140-164)</td>
</tr>
<tr>
<td>Diastolischer Blutdruck (mmHg)</td>
<td>89 (82-95)</td>
</tr>
<tr>
<td>Körpergewicht (Kg)</td>
<td>91.7 ±15.5</td>
</tr>
<tr>
<td>BMI (Kg/m²)</td>
<td>31.4 (27.9-34.1)</td>
</tr>
<tr>
<td>HbA1c (%)</td>
<td>8.3 ±1.1</td>
</tr>
<tr>
<td>Diabetesdauer (Jahre)</td>
<td>8.1 ±6</td>
</tr>
<tr>
<td>Diabetes in Familie (%)</td>
<td>61.3</td>
</tr>
<tr>
<td>CVD in Familie (%)</td>
<td>34.7</td>
</tr>
<tr>
<td>Raucher (%)</td>
<td>28</td>
</tr>
<tr>
<td>cFLC Baseline (mg/L)</td>
<td>30.2 (24.9-39.5)</td>
</tr>
<tr>
<td>IMT (mm)</td>
<td>0.87 (0.78-0.94)</td>
</tr>
<tr>
<td>hsCRP</td>
<td>3.4 (2.0-5.9)</td>
</tr>
</tbody>
</table>

Daten werden entweder als Prozentwerte für kategorische, und als Mittelwert ± Standardabweichung oder Median mit 25.-75. Perzentile für kontinuierliche Variablen angegeben

Tabelle 4 Baseline-Charakteristika der Studienpopulation

Abbildung 10 Häufigkeitsverteilung freier Leichtketten zu Baseline (links) und nach 3 Monaten (rechts)

9.2 Korrelation und Regression
Korrelationsanalysen kombinierter freier Serum Leichtketten (cFLC Baseline)

<table>
<thead>
<tr>
<th>Variablen</th>
<th>Einfache Korrelationsanalyse (Spearman-Rho)</th>
<th>Partielle Korrelationsanalyse*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-Wert</td>
<td>P-Wert</td>
</tr>
<tr>
<td>B-Score Gesamt</td>
<td>0.38** 0.001</td>
<td>0.320** 0.007</td>
</tr>
<tr>
<td>cIMT</td>
<td>0.220 0.58</td>
<td>0.216 0.068</td>
</tr>
<tr>
<td>hsCRP</td>
<td>0.233 0.045</td>
<td>0.351** 0.003</td>
</tr>
<tr>
<td>Diabetesdauer</td>
<td>0.61 0.601</td>
<td></td>
</tr>
<tr>
<td>packyears</td>
<td>0.169 0.274</td>
<td></td>
</tr>
</tbody>
</table>

* Adjustiert für Alter, Geschlecht und Nierenfunktion

** Statistisch Signifikant bei p > 0.05

Tabelle 5 Korrelationsanalysen cFLC Baseline

Korrelation der durchschnittlichen Intima-Media-Dicke mit FLC zu Baseline

<table>
<thead>
<tr>
<th>Variablen</th>
<th>Einfache Korrelationsanalyse (Spearman-Rho)</th>
<th>Partielle Korrelationsanalyse*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>R-Wert</td>
<td>P-Wert</td>
</tr>
<tr>
<td>Quotient FLC κ/λ</td>
<td>0.112 0.339</td>
<td>0.159 0.226</td>
</tr>
<tr>
<td>FLC κ</td>
<td>0.219 0.060</td>
<td>0.317** 0.013</td>
</tr>
<tr>
<td>FLC λ</td>
<td>0.186 0.110</td>
<td>0.285** 0.027</td>
</tr>
<tr>
<td>cFLC</td>
<td>0.190 0.103</td>
<td>0.191 0.143</td>
</tr>
<tr>
<td>hsCRP</td>
<td>0.017 0.883</td>
<td>0.097 0.463</td>
</tr>
</tbody>
</table>

* Adjustiert für Alter, eGFR und Geschlecht

** Statistisch Signifikant bei p > 0.05

Tabelle 6 Korrelationsanalysen cIMT Baseline
Aus Tabelle 5 ergibt sich beim B-Score Gesamt eine signifikante Korrelation mit cFLC, die auch nach Korrektur für Alter, Geschlecht und Nierenfunktion statistisch signifikant bleibt. Die Korrelation der polyklonalen Leichtketten mit hsCRP ergab eine positive signifikante Korrelation in der adjustierten Analyse.

Beim Vergleich der Mittelwerte der kombinierten freien Leichtketten (cFLC) aufgetragen je nach B-Score, zeigt sich ein Anstieg ab einem Score von 2 (p=0.001) (Vgl. Abbildung 11).

Nach Kategorisierung der Plaque Werte in 3 Gruppen (Vgl. Tabelle 6) und bei Vergleich der Kategorie 3 mit den anderen beiden, ergaben sich weiterhin signifikante Unterschiede zwischen den Mittelwerten (Kategorie 1 und 3: p=0.008; Kategorie 2 und 3: p=0.04) (Vgl. Abbildung 12).
Bei einfacher Pearson Korrelation der mittleren Intima-Media-Dicke (cIMT) und der kombinierten freien Leichtketten (cFLC) ergibt sich eine Korrelation von $r=0.272$ bei einem Signifikanzwert von $p=0.018$.

Die in Tabelle 4 signifikanten Korrelationen der κ-Leichtketten und der Gesamt-Leichtketten (cFLC) mit der mittleren Intima-Media-Dicke (cIMT) wurden nach Adjustierung für Alter und Geschlecht nicht bestätigt.
Bei Berechnungen der Linearen Regression der mittleren Intima-Media-Dicke (cIMT) und der kombinierten freien Leichtketten (cFLC) ergibt sich ein äußerst schwacher linearer Zusammenhang mit $R^2=0.074$ (vgl. Abb. 12). Bei Berechnung der partiellen Korrelation unter Berücksichtigung des κ/λ-Quotienten (QFLC) ergibt sich eine noch schwächere Korrelation von $r=0.251$ bei einer Signifikanz von $p=0.03$. Die Residualvarianz ist in diesem Fall auf $R^2=0.063$ gesunken.

Ein ähnliches Ergebnis entsteht auch bei der Korrelation der auf die geschätzte glomeruläre Filtrationsrate adjustierten Ergebnisse. Hierbei zeigt sich ein Korrelationswert $r=0.252$ bei einer Signifikanz von $p=0.029$, mit einer Residualvarianz von $R^2=0.064$.

Beim Vergleich der Korrelationen unter Berücksichtigung des Rauchverhaltens und des Geschlechts ergeben sich zwar auch signifikante Korrelationen, deren Bestimmtheitsmaße jedoch ebenfalls nur gering sind (Non-smoker, male $R^2=0.237$; Non-smoker, female $R^2=0.01$; Smoker, male $R^2=0.044$; Smoker, female $R^2=0.08$)(Vgl. Abbildung 14).

Die Korrelation von eGFR und κ/λ-Quotient war invers mit einem $r=-0.119$, der jedoch nicht statistisch signifikant war ($p=0.351$).
Abbildung 15 Korrelationen der beiden Entzündungsmarker cFLC und hsCRP zu Baseline (links) und nach 3 Monaten (rechts)

Die Berechnungen der Korrelation der beiden Entzündungswerte zu den beiden Zeitpunkten Baseline \((r=0.350, p=0.002)\) und 3 Monaten \((r=0.363, p=0.001)\) waren in beiden Fällen signifikant positiv (Vgl. Abbildung 15).

Die Korrelation zwischen freien Leichtketten (cFLC) und dem Langzeitblutzuckerwert (HbA1c) war zu den Zeitpunkten Baseline \((r=0.43; p=0.774)\) und 3 Monaten \((r=0.134; p=0.255)\) nicht signifikant.

10 Diskussion

Ziel dieser Arbeit war es, einen möglichen Zusammenhang zwischen dem Fortschritt der Atherosklerose, dargestellt durch die Carotis-Intimamediadicke (cIMT), dem Ausmaß der Atherosklerose, wiedergegeben durch den B-Score, und der Plasmakonzentration an freien polyklonalen Immunglobulin Leichtketten (FLC) bei Personen mit Diabetes mellitus Typ 2 zu beschreiben. Weiters wurde ein Zusammenhang mit Entzündungsparametern wie dem hoch sensitiven CRP (hsCRP) angesehen. Die Arbeit wurde auf Basis zweier kürzlich zuvor veröffentlichten Studien begonnen, die jeweils zum ersten Mal einen Zusammenhang zwischen dem hier untersuchten Biomarker und kardiovaskulären Ereignissen bei PatientInnen mit Diabetes Typ 2 nachweisen konnten (146, 150).
10.1 Serum Leichtketten und Atherosklerose

Die Korrelation mit der cIMT ist nach der Adjustierung für Alter, Geschlecht und Nierenfunktion nicht statistisch signifikant. Der stark signifikante Anstieg der freien Leichtketten bei PatientInnen mit einem durchschnittlichen Plaque-Ausmaß \geq 2mm bzw. einem Score ≥ 2 (Vgl. Abbildung 11) im Vergleich zu PatientInnen mit Plaque < 2mm ist jedoch ein Indikator für einen möglichen Zusammenhang dieser zwei Parameter und ermutigt zu weiterer Nachforschung.

Diese scheinbar widersprüchlichen Ergebnisse können sich aus der Tatsache erklären, dass der B-Score, im Gegensatz zur cIMT, eher als Parameter für das Ausmaß der Atherosklerose gesehen wird. Autoren von mehreren Assoziationsstudien stellen das Plaque-Ausmaß der Atherosklerose als den besseren Prädiktor für zukünftige kardiovaskuläre Ereignisse dar (126, 153, 154).

Obwohl die Intima-Media-Messung und Plaque-Quantifizierung der extrakraniellen Karotiden mittels B-Bild-Sonographie als allgemein anerkannter Parameter für die systemische Atherosklerose gilt und ein sehr guter prognostischer Faktor für koronare Herzerkrankheiten ist, muss sie natürlich weiterhin als Surrogatparameter mit all seinen Limitierungen gesehen werden. Ein Korrelat mit systemischen, nicht-spezifischen Entzündungsparametern ist deshalb immer noch mit Vorsicht zu genießen.

10.2 Serum Leichtketten und C-reaktives Protein

Burmeister et. al stellten bei der Untersuchung der Korrelation zwischen hsCRP und cFLC als Entzündungsmarker bei chronischen Krankheiten nur einen schwachen Zusammenhang fest, selbst nach Korrektur für die Nierenfunktion (155). Dies konnte, durch die in dieser Studie gefundenen Ergebnisse der Korrelation zwischen beiden Markern zu den beiden Zeitpunkten, bestätigt werden (Vgl. Abbildung 15). Sie kommen ebenso wie Shantsila et. al zu dem Schluss, dass beide Marker unabhängige Informationen über den Entzündungsstatus bzw. die Immunantwort liefern und nicht als gleichwertige Marker zu betrachten sind (146, 155). Der Nutzen der Kombination beider Marker des adaptiven und des angeborenen Immunsystems
als Werkzeug für Diagnosen chronischer Entzündungen wird jedoch mit unserer Arbeit nicht beantwortet und bedarf weiterer Forschung.

10.3 Studienkohorte und Studienablauf

10.4 Ausblick

Frühere Daten haben gezeigt, dass cFLC Spiegel bei abnehmender Nierenfunktion im Plasma ansteigen. Jedoch gibt es auch Arbeiten, die nahelegen, dass die Spiegel bereits längere Zeit vor dem Auftreten der Nierenfunktionseinschränkung zu steigen beginnen (143, 144). Es ist somit unklar, in welchem Ausmaß die chronische Entzündung bei Typ 2 Diabetes -durch

Ebenso wurden in dieser Studie andere Entzündungs-Ursachen die ebenfalls zu einer Erhöhung an polyklonalen freien Leichtketten führen können, wie chronische Infektionen, subklinische Autoimmunkrankheiten oder Neoplasien (157, 158) nicht explizit erfragt und können somit nicht gänzlich ausgeschlossen werden.

Dispenzieri et. al hatten bereits einen Zusammenhang zwischen der cFLC-Konzentration und der Überlebenswahrscheinlichkeit der Allgemeinbevölkerung festgestellt (139), was zur Spekulation führte, ob nicht zukünftig cFLC Messungen eine nützliche Früherkennungsmethode für die allgemeine Gesundheitsbeurteilung sein könnten, die nicht spezifisch für Atherosklerose oder Diabetes sein müssen. Es ist jedoch fraglich welche therapeutischen Konsequenzen sich aus dieser Erhöhung in der Allgemeinbevölkerung zu ziehen sind und ob cFLCs ein potentiell modifizierbarer Risikofaktor oder lediglich Risikomarker sind.

Auch wenn unsere Daten auf einen Zusammenhang zwischen cFLC und Karotis-Atherosklerose bei Personen mit Diabetes mellitus Typ 2 hinweisen, so sind doch weitere Analysen mit größeren Fallzahlen notwendig, um diese Assoziation zwischen freien Leichtketten im Plasma und Atherosklerose zu bestätigen.
11 Literaturverzeichnis

