Diplomarbeit

Milde Hypothermie (33°C) erhöht die Induzierbarkeit von Vorhofflimmern

Eingereicht von

Stefan Reiter

zum Erlangen des Titels

Doktor der gesamten Heilkunde

(Dr. med. univ.)

an der

Medizinischen Universität Graz

geleitet von der

Universitätsklinik der Inneren Medizin

Abteilung für Kardiologie

unter der Aufsicht von

Assoz.-Prof. Priv.-Doz. Dr.med.univ. Daniel Scherr

Dr. med. univ. Martin Manninger-Wünscher

Graz, 22.04.2015
Eidesstattliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe, andere als die angegebenen Quellen nicht verwendet habe und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz, am 22.04.2015

Stefan Reiter eh
Danksagung

Zuallererst möchte ich meiner Familie danken, die mir überhaupt dieses Studium ermöglicht hat. Des weiteren Danke ich meiner Freundin Johanna für die stetige Motivation, sowie meinen Freunden aus Deutschland und Österreich für die beste Unterhaltung die man sich nur vorstellen kann.

Der größte Dank jedoch gilt meinem Diplomarbeitsbetreuer Dr. med. univ. Martin Manninger-Wünscher für die stets schnelle Beantwortung meiner Fragen und die allzeitige Motivation.

Formalia der vorliegenden Arbeit

Aufgrund des ungestörten Leseflusses sowie der einfachen Schreibweise wird in dieser Arbeit ausschließlich die männliche Form verwendet, in welcher selbstverständlich die weibliche Form inbegriffen sein soll.
Liste der Abkürzungen

ROSC = Return of spontaneous circulation

ECMO = Extrakorporale Membranoxygenierung

ILCOR = International Liaison Committee on Resuscitation

AV-Knoten = atrioventrikulärer Knoten

MDP = maximal-diatolisches Potential

EKG = Elektrokardiogramm

BPM = Beats per minute (Schläge pro Minute)

VHF = Vorhofflimmern

KHK = koronare Herzkrankheit

SA-Block = sinuatrialer Block

AV-Block/Leitung = atrioventrikulärer Block/Leitung

INR = International normalized Ratio

EPU = Elektrophysiologische Untersuchung

VA-Leitung = Ventrikuloatriale Leitung

ICD = Implantable Cardioverter-Defibrillator (Implantierbarer Kardioverter-Defibrillator)

CS = Coronarsinus

mAOD = Mittlerer Aortendruck

mPAP = Mean Pulmonal Arterial Pressure (mittlerer Pulmonalarteriendruck)

ARZ = Absolute Refraktärzeit
Diagrammverzeichnis

Diagramm 1: Physiologisches Aktionspotential im Vergleich ..21
Diagramm 2: Physiologisches Elektrokardiogramm ...22
Diagramm 3: Vorhofflimmern im EKG ...24
Diagramm 4: Ventrikuläre Tachyarrhythmien ...25
Diagramm 5: Die wichtigsten Erregungsleitungsstörungen ..27
Diagramm 6: Vorhofflimmerinduzierbarkeit bei 50ms Burstingprotokoll43
Diagramm 7: ARZ (ms) im Thermievergleich ...44
Diagramm 8: Arterielle Kaliumwerte bei verschiedenen Thermiestufen in mmol/L45
Diagramm 9: Baseline PQ-Intervall in ms ...46
Diagramm 10: Stim-Q-Zeit in ms ...47
Diagramm 11: QRS-Komplex-Dauer in ms ...48
Diagramm 12: QT-Dauer in ms ...49
Tabellenverzeichnis

Tabelle 1: Indikationen einer EPU...29
Tabelle 2: Hämodynamische Veränderungen...41
Abstract auf Deutsch

Hintergrund:
Die milde Hypothermie (32-34°C) ist eine Therapieoption, um nach einer erfolgreichen Reanimation, bei einem Zustand nach Herzstillstand das neurologische Outcome zu verbessern und die Mortalitätsrate zu senken. Sie verringert das Infarktareal und erhöht die Schlagkraft des Herzens, wenn sie vor der Reperfusion angewandt wird und wird derzeit als Therapiewahl bei einem kardiogenen Schock getestet. Die milde Hypothermie führt jedoch auch zu einer Verlängerung der Aktionspotentialdauer der Kardiomyozyten und zu einem intrazellulären Kalium-Shift. Daher testen wir die Hypothese, ob die milde Hypothermie (32-34°C) die Induzierbarkeit von Vorhofflimmern erhöht.

Methodik:
Im Rahmen unserer Tierversuchsstudie wurden acht gesunde Schweine (67±7kg) anästhesiert und über Schleusen mit einem 4-poligen Stimulationskatheter im hohen rechten Atrium, einem Swan-Ganz Katheter in einer Pulmonalarterie und einem 10-poligen Diagnostikkatheter im Koronarsinus versorgt. Die milde Hypothermie (33°C) wurde intravaskulär mit Hilfe eines Kühlgeräts erreicht. Die Messungen wurden bei Normothermie (38°C) und Hypothermie (33°C) durchgeführt. Dabei wurden die absoluten atrialen Refraktärzeiten mit Hilfe von einem Stimulationsprotokoll und die Vorhofflimmerinduzierbarkeit durch Burst-Stimulation, bei unterschiedlichen Thermiestufen verglichen.

Ergebnisse:
Bei milder Hypothermie war die Induzierbarkeit von Vorhofflimmern signifikant erhöht. (62,5% +/- bei milder Hypothermie im Vergleich zu 25% +/- bei Normothermie, p<0,05) Zusätzlich verlängerten sich die absolute, atriale Refraktärzeit, sowie die QRS-Dauer, die Stim-Q-Zeit, die baseline P-Q-Zeit und die Q-T-Zeit signifikant. Der intraarterielle Kaliumlevel fiel um 0,5mmol/L +/- unter Hypothermie, blieb jedoch in beiden Gruppen im Normalbereich.

Zusammenfassung:
Unsere gesammelten Daten zeigen, dass die milde Hypothermie trotz einer verlängerten Leitungsgeschwindigkeit, einer erhöhten atrialen Refraktärzeit und unabhängig vom Kalium-Spiegel, den Vorhof anfälliger für Vorhofflimmern macht.
Abstract (English)

Background:
Mild hypothermia (32-34°C) is a treatment option to improve neurological outcome and survival after cardiac arrest. MH further reduces myocardial infarct size when initiated before reperfusion, exerts positive inotropic effects and is therefore tested as a therapeutic option in cardiogenic shock. However, mild hypothermia also prolongs the cardiomyocyte action potential and induces an intracellular potassium-shift. We therefore tested the hypothesis that mild hypothermia increases the inducibility of atrial fibrillation.

Methods:
We conducted an animal study. Therefore we anesthetized eight healthy pigs (67±7kg) and instrumented them with a Swan-Ganz catheter in the pulmonary artery, a quadripolar stimulation catheter in the high right atrium and a decapolar catheter in the coronary sinus. Hypothermia (33°C) was generated with an intravascular cooling device. Measurements were performed at normothermia (38°C) and at mild hypothermia (33°C). At each temperature, the effective atrial refractory period was measured with a stimulation protocol. The inducibility of atrial fibrillation was assessed by “burst-protocols”.

Results:
The amount of pigs with atrial fibrillation increased. (62,5%±/- at mild hypothermia compared to 25%±/- at normothermia, p<0,05). In addition the effective atrial refractory period, QRS-duration, QT-duration, baseline PQ-duration and the Stim-Q duration increased significant. Potassium-levels decreased at mild hypothermia with a mean value of 0,5mmol/L+/-, but it was still in physiological range.

Summary:
Our data imply that mild hypothermia represents an arrhythmic substrate rendering the atria more susceptible to AF although conduction times as well as refractory periods are increased.
1. Einleitung

Die milde Hypothermie ist eine Therapieoption, zur Verbesserung der Überlebenswahrscheinlichkeit und des neurologischen Outcomes nach einem Herzstillstand. (1) Zusätzlich reduziert sie die myokardiale Infarktgröße, am meisten wenn sie vor der Reperfusion angewandt wird (2), wirkt positiv inotrop und wird deshalb als eine therapeutische Option bei einem kardiogenen Schock getestet und angewandt. (1) Ein zusätzlicher positiver Effekt der milden Hypothermie ist, dass sie den Sauerstoffverbrauch um 30-50% verringert und damit eine Überbrückungszeit bei kardiogenem Schock oder Atemversagen schaffen kann. (3) Jedoch verlängert die milde Hypothermie auch das Aktionspotential der Herzmuskelzellen. (4) Deshalb testen wir die Hypothese, ob milde Hypothermie die Induzierbarkeit von Vorhofflimmern auf das Herz erhöht.

1.1. Milde Hypothermie

Der Begriff „milde Hypothermie“ beschreibt in der Medizin eine Kühlung des Körpers auf bis zu 32°C. Von therapeutischer milder Hypothermie spricht man bei einer geplanten, medizinischen Abkühlung der Körperkerntemperatur auf idealerweise 33°C. Die Toleranz schwankt zwischen 32°C und 34°C. Die therapeutische Hypothermie ist indiziert (Stand 2014) bei jedem komatösen Patienten nach ROSC (Return of spontaneous circulation) unabhängig von dem Ort des Kreislaufstillstandes und des initialen Herzrhythmus. (5)

Die therapeutische Hypothermie geht mit einer Reihe von körperlichen und elektrophysiologischen Veränderungen einher, auf die später noch näher eingegangen werden soll; unter anderem Bradykardie und QRS-Komplex Verbreiterung. Zusätzlich wird die Bildung freier Radikale, die Ausschüttung exzitatorischer Aminosäuren und der intrazelluläre Anstieg der Kalziumionenkonzentration verringert, welche in Summe zu einer mitochondrialen Schädigung, Nekrose und Apoptose im Rahmen eines Reperfusionsschadens führen könnte. (5)
Bei der therapeutischen Hypothermie unterscheidet man 3 Phasen:

1. **Die Induktionsphase.** Sie gilt bis zum Erreichen der Zieltemperatur von 33°C. Eine schnelle Induktion sollte angestrebt werden, da eine sekundäre Schädigung des hypoxischen Areals mit der Wiederaufnahme der Kreislaufaktivität beginnt; dabei sollte Kältezittern mit adäquater Sedierung und gegebenenfalls Muskelrelaxation behandelt werden.

2. **Die Phase der Aufrechterhaltung.** Ist die Zieltemperatur bei einer Körperkerntemperatur von 33°C erreicht (Toleranz zwischen 32 und 34°C), sollte diese für 12, im besten Fall für 24 Stunden aufrechterhalten werden.

3. **Die Phase der Wiedererwärmung.** Diese Phase beginnt 24 Stunden nach Erreichen der Zieltemperatur. Sie erfolgt passiv mit 0,5°C/h. Ab 35°C werden Analgosedierung und Muskelrelaxantien gestoppt. (5)

1.2. **Historischer Hintergrund**

Aufgrund der vielen Komplikationen mit Hypothermie und der schlecht nachzuverziehenden Wirkung der Hypothermie, wurde in den folgenden Jahren auf diesem Gebiet nicht weiter geforscht.

Erst im Jahre 1990 wurde die Forschung mit der Hypothermie-Studie von Leonov wieder aufgenommen.(8)

einer Körperkerntemperatur von 32-34°C gekühlt werden sollen, um ein verbessertes neurologisches Outcome zu erzielen. (9)

Diese neue Regel entstand aufgrund von zwei Studien mit den Namen:

1. Treatment of comatose survivors of out-of-hospital cardiac arrest with induced hypothermia:

Bei dieser Studie von Bernard et al wurden 77 Patienten randomisiert und entweder mit milder Hypothermie (33°C Körperkerntemperatur über einen Zeitraum von 12 Stunden) oder mit Normothermie, bei einem Zustand nach Herzstillstand mit ROSC (Return of spontaneous circulation) behandelt. Bei der Hypothermie-Gruppe betrug die Anzahl der Patienten, welche mit einem guten Outcome (entweder nach Hause oder in die Rehabilitation entlassen) überlebten 49% wohingegen sie bei der Normothermie-Gruppe lediglich 26% betrug.(1)

2. Mild therapeutic hypothermia to improve the neurologic outcome after cardiac arrest:

Interessanterweise gibt es noch eine Studie aus dem Jahr 2013 von Nielsen et al. (34), welche 939 Patienten, bei einem Zustand nach Herzstillstand mit ROSC, randomisiert und entweder mit milder Hypothermie (33°C) oder mit Normothermie (36°C) behandelt hat. Die Ergebnisse dieser Studie konnten keinen Unterschied, im Hinblick auf neurologisches Outcome und Mortalitätsrate zwischen diesen beiden Gruppen feststellen. Ein Grund dafür könnte die extrem gute Versorgungskette in der normothermen Kontrollgruppe sein.

1.3. Kühntechnik

Bei den Kühltechniken unterscheidet man eine externe Oberflächenkühlung von einer internen Kühlung; wobei stets eine kontinuierliche Temperaturkontrolle benötigt wird. Die Blase, der Nasopharynx, die Blutbahn und der Ösophagus kommen dabei als Messorte infrage.

Die externe Oberflächenkühlung kann mit Eisbeuteln, Kühlelementen (mit und ohne Grafit-Wasser Emulsion) oder wasserdurchströmenden Matten durchgeführt werden. Sie ist im Allgemeinen leicht durchzuführen, jedoch schwer steuerbar und ein hoher Aufwand für das medizinische Pflegepersonal.

Die interne Kühlung besteht aus kalten Infusionen mit einer balancierten Elektrolytlösung und einer Einfuhrgeschwindigkeit mit bis zu 30 ml/kg KG und speziellen endovaskulären Kathetern. Diese können entweder über die Vena jugularis interna, die Vena subclavia oder die Vena femoralis in Richtung des rechten Vorhofes vorgeschoben werden. Steriles Wasser wird gekühlt durch den Katheter geleitet und kühlt somit den Patienten von innen. Außerdem werden die Vorlauftemperatur und die Vorlaufmenge automatisch über die Rückkoppelung der Körperkerntemperatur geregelt. (5)

1.3.1 Zugelassene Geräte

Wir verwenden den Accutrol™ Catheter 14F and InnerCool RTx Endovascular System, Philips Healthcare, Vienna, Austria. Auch dieses Gerät ist einfach zu bedienen und mehr als ausreichend für eine kontinuierliche und stetige Kühlung.
1.4. Durchführung

1.5. Anwendungsgebiete und Kontraindikationen

Die therapeutische Hypothermie hat mehrere Anwendungsgebiete:

Sie ist sinnvoll für ein besseres Outcome bei Patienten mit reanimationspflichtigem Herzstillstand (8). Weitere experimentelle Studien zeigen, dass die therapeutische Hypothermie auch bei einem Atemstillstand, nach einem Infarkt (2) und bei einer Sepsis (3) Vorteile bringt. Leider fehlen in diesen Bereichen noch randomisierte Studien um die Evidenz zu beweisen.

Zusammenfassend kann man sagen, dass ein verlangsamerer Stoffwechsel im Gehirn, eine Verringerung des Sauerstoffverbrauches, eine Reduktion des programmierten Zelltodes, eine Reduktion des Hirnödems nach Reperfusion, eine Unterdrückung der Bildung freier Sauerstoffradikale und eine Verringerung der Ausschüttung neuro-zytotoxischer Neurotransmitter wichtige physiologische Effekte der Hypothermie sind, welche das Outcome des Patienten nach ROSC verbessern. (10)
1.5.1. Post Reanimation

Der Grund dafür ist noch nicht genau geklärt, man vermutet aber, dass es aufgrund von mehreren chemischen und physischen Ereignissen während und nach der Ischämiephase des Gehirns dazu kommt. (8)

Die milde Hypothermie verringert den Sauerstoffverbrauch des Gehirns, verzögert destruktiv wirkende Enzymreaktionen, unterdrückt die Wechselwirkungen freier Radikale, erhält den flüssigen Zustand der Lipoproteine der Biomembran, reduziert die intrazelluläre Azidose und inhibiert sowohl die Freisetzung als auch die Aufnahme von exzitatorischen Neurotransmittern. (8)

Aus der Summe dieser ganzen Effekte entsteht die neuroprotektive Wirkung von milder Hypothermie bei einem Zustand nach Reanimation.

1.5.2. Post Infarkt

Heutzutage ist es Standard, falls es logistisch möglich ist, bei einem Herzinfarkt in das nächstgelegene Herzkatheterlabor zu fahren und die Koronar-Obstruktion mittels einer perkutanen Koronarintervention zu beheben, um eine Reperfusion des infarzierten Areals zu ermöglichen. (12)

Durch die Reperfusion des Areals entstehen oftmals noch zusätzliche Schädigungen des infarzierten Areals, welche in Kombination mit myokardialen Endothelschädigungen, die durch den Infarkt entstanden sind, zu mikrovaskulären Obstruktionen führen und damit ein schlechteres Outcome entstehen lassen können. (13)

Eine Studie von Götberg et al ergab, dass zumindest bei Schweinen das Infarktareal mit milder Hypothermie (35°C), welche durch kalte Infusionen generiert wurde, im Vergleich zu Normothermie stark gesunken ist. (2)

Der größte Erfolg wurde festgestellt, wenn die Hypothermie vor der Reperfusion erreicht wurde. In diesem Fall war das Infarktareal im Durchschnitt um 39% kleiner als bei Normothermie. Zusätzlich verringerten sich die mikrovaskulären Obstruktionen sowohl bei Hypothermie vor als auch während der Reperfusion. (2)
Interessant zu erwähnen ist jedoch noch, dass 6 von 7 Schweinen, die vor der Reperfusion die Zieltemperatur von 35°C erreicht haben, Herzrhythmusstörungen im Sinne von Kammerflimmern entwickelt haben, welches für eine erhöhte Arrhythmogenität bei milder Hypothermie spricht. (2)

1.5.3. Sepsis
1.6. Elektrophysiologie

Die Elektrophysiologie beinhaltet ein großes Spektrum an klinischen und experimentellen Bereichen. In dieser Diplomarbeit hingegen spielt vor allem die experimentelle Elektrophysiologie aus dem Forschungsgebiet der Physiologie, insbesondere die Muskelphysiologie eine Rolle. Im folgenden Teil sollen die elektrophysiologischen Grundlagen erklärt werden, um danach näher auf die Auswirkungen, beziehungsweise die elektrophysiologischen Veränderungen der milden Hypothermie eingehen zu können.

1.6.1. Elektrophysiologische Grundlagen

Die Zelle komplett refraktär und kann nicht erregt werden. Erst ab einem Membranpotential von -40 mV und niedriger können die spannungsabhängigen Natriumkanäle wieder erregt werden. Deshalb gilt die Zeit in der die Zelle von -40 auf -90 mV repolarisiert als relative Refraktärzeit. In dieser Zeit kann die Zelle erneut erregt werden, ohne dass sie vollständig repolarisiert ist. Dies wiederum kann zu Herzrhythmusstörungen führen. Wenn die Calciumkanäle schließen beginnt die endgültige Repolarisation, welche mit der Wiedereinfuhr und den ursprünglichen Ionenkonzentrationen bei einem Membranpotential von -90 mV endet. (14)

Diagramm 1: Physiologisches Schrittmacher-Aktionspotential und Arbeitsmyokard-Aktionspotential im Vergleich

![Diagramm 1: Physiologisches Schrittmacher-Aktionspotential und Arbeitsmyokard-Aktionspotential im Vergleich](image-url)
Grundlagen EKG:

Diagramm 2: Physiologisches Elektrokardiogramm:
1.7. Herzrhythmusstörungen

Bei den Tachyarrhythmien unterscheidet man generell drei Formen:
- atrialen Tachyarrhythmien
- atrioventrikulären Tachykardien
- ventrikulären Tachykardien

Unter supraventrikulären Tachykardien versteht man die Zusammenfassung der atrioventrikulären und der atrialen Tachyarrhythmien. Die supraventrikulären Tachykardien stellen sich im EKG eher durch schmälere Kammerkomplexe dar, wohingegen die ventrikulären meistens anhand eines QRS-Blockbildes erkennbar sind. Die klinisch häufigsten Arrhythmieformen sind die supraventrikulären Tachykardien, wobei das Vorhofflimmern aus der Gruppe der atrialen Tachyarrhythmien an erster Stelle steht. Das Vorhofflimmern (VHF) ist durch das Vorliegen multipler Kreiserregungen mit einer Frequenz von circa. 500 pro Minute gekennzeichnet. Es kann idiopathisch auftreten, die
häufigsten Ursachen sind jedoch KHK, arterielle Hypertonie, Herzklappenfehler, Myokardinfarkte, Elektrolytstörungen und Hyperthyreose. Man unterscheidet ein paroxysmales, von einem persistierendem (länger als 7 Tage bestehend) und einem permanenten Vorhofflimmern (keine Kardioversion in Sinusrhythmus mehr möglich). Durch die fehlende Kontraktion (v.a. im Herzohr) kommt es beim Vorhofflimmern häufig zu einer Thrombenbildung. Der Chads-Vasc Score hilft bei der Entscheidung ob ein Patient mit Vorhofflimmern antikoaguliert werden muss oder nicht. Der Score berechnet sich aus: Kongestiver Herzensuffizienz (1 Punkt), Bluthochdruck (1 Punkt), Alter (65-74 = 1 Punkt, >75 = 2 Punkte), Diabetes mellitus (1 Punkt), Schlaganfall oder transistorisch, ischämische Attacke (2 Punkte), Gefäßkrankheiten (1 Punkt) und Geschlecht (Frauen 1 Punkt). Ab einer Score von 1 Punkt ist eine orale Antikoagulation indiziert. Im EGK ist das Vorhofflimmern durch das Fehlen der P-Welle sowie durch eine absolute Arrhythmie erkennbar. (14)

1.7.1. Klassisches Vorhofflimmern im EKG: (16)

Diagramm 3: Vorhofflimmern im EKG:

1.7.2. Ventrikuläre Tachyarrhythmien im EKG: (16)

Diagramm 4: Ventrikuläre Tachyarrhythmien:

Diagramm 5: Die wichtigsten Erregungsleitungsstörungen: (16)
1.8. Elektrophysiologische Untersuchung

1.8.1. Indikationen für eine EPU

Tabelle 1:

<table>
<thead>
<tr>
<th>Sichere Indikationen</th>
<th>Mögliche Indikationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>- Patienten mit AV-Block II. oder III. Grades, die nach Schrittmacherimplantation symptomatisch bleiben und bei denen eine andere Arrhythmie als Ursache der Symptome vermutet wird</td>
<td>- Symptomatische Patienten, bei denen Störungen der Sinusknotenfunktion als Ursache der Symptome vermutet werden können, bei denen aber eine Kausalitätsbeziehung zwischen Arrhythmie und Symptom nicht bewiesen ist</td>
</tr>
<tr>
<td>- Symptomatische Patienten zum Ausschluss der Auslösbarkeit einer Kammertachykardie</td>
<td>- Patienten mit dokumentierter Erregungsbildungsstörung, bei denen zur Bestimmung der AV- bzw. VA-Leitung eine EPU durchgeführt wird, um die bestmögliche Schrittmachertherapie festzulegen</td>
</tr>
<tr>
<td>- Patienten mit Tachykardien, bei denen der Pathomechanismus der Tachykardie geklärt werden soll</td>
<td>- Patienten mit bekannter Erregungsbildungsstörung im Sinusknoten, um evtl. andere Arrhythmien als Ursache der Symptome auszuschließen</td>
</tr>
<tr>
<td>- Patienten im Rahmen einer Katheterablation</td>
<td>- Symptomatische Patienten, bei denen ein His-Purkinje-Block als Ursache der Symptome vermutet, jedoch bislang nicht nachgewiesen werden konnte</td>
</tr>
<tr>
<td>- Symptomatische Patienten mit Präexzitation, bei denen eine Katheterablation der akzessorischen Leitungsbahn durchgeführt werden soll</td>
<td>- Asymptomatische Patienten ohne spontane Arrhythmien, jedoch mit beruflichen oder sportlichen Aktivitäten, bei denen das Auftreten</td>
</tr>
<tr>
<td>- Patienten mit dokumentierten Tachykardien mit breitem QRS-Komplex zur Abklärung des Pathomechanismus</td>
<td></td>
</tr>
<tr>
<td>- Patienten mit elektrokardiographisch eindeutigem Nachweis von</td>
<td></td>
</tr>
</tbody>
</table>
Kammertachykardien zur Evaluierung der optimalen Therapieform

- Patienten mit organischer Herzerkrankung und Synkopen, deren Ursache nach angemessener Untersuchung nicht geklärt werden kann

- Überlebende eines Herz-/Kreislaufstillstandes ohne Hinweis auf einen akuten Infarkt

- Überlebende eines Herz-/Kreislaufstillstandes, der mehr als 48 Stunden nach der akuten Phase eines Myokardinfarktes zurückliegt, ohne Hinweis auf eine erneute Ischämie

- Überprüfung von Wahrnehmungs- und Defibrillationsschwelle nach Änderung der antiarrhythmischen Medikation oder nach Elektrodendislokation

- deutliche Verschlechterung der ventrikulären Sensingsignale während Sinusrhythmus mit Erreichen von Werten unterhalb der intraoperativ minimal akzeptierten Signalgröße (5 mV) wegen der Gefahr des Nichterkennens von Kammerflimmern

einer Tachykardie ein hohes Risiko darstellt

- Erfolgskontrolle der antiarrhythmischen Therapie

- Patienten ohne organische Herzerkrankung und negativer Kipptischuntersuchung, bei denen wiederholt Synkopen auftreten

- bei fehlender EKG-Dokumentation der klinischen ventrikulären Tachykardie oder alleiniger Dokumentation von Kammerflimmern im Rahmen einer Reanimation zur Frage, ob ein ICD ohne antitachykarde Stimulationsmöglichkeit ausreichend ist

- Evaluierung der Induzierbarkeit von Vorhofflimmern/-flattern oder supraventrikulärer Tachykardien, der Stabilität der RR-Intervalle während induziertem Vorhofflimmern bzw. dem Auftreten einer aberranten Leitung während induziertem Vorhofflimmern/-flattern oder supraventrikulärer Tachykardien zur Frage, über welche zusätzlichen Detektionskriterien der ICD verfügen sollte

- Überprüfung der Detektion und Terminierung von klinischer
| - Versagen der Detektion oder Terminierung einer spontanen ventrikulären Tachyarrhythmie aus ungeklärter Ätiologie | ventrikulärer Tachykardie und Kammerflimmern vor Krankenausgangszeitung |
| - Überprüfung, ob eine wegen klinischer Komplikationen vorgenommene Neuprogrammierung die Detektion und Terminierung der klinischen ventrikulären Tachykardie oder von Kammerflimmern verbessert oder gefährdet |}

1.8.2. Durchführung einer EPU

1.9. Elektrophysiologische Veränderungen bei Hypothermie

1.10. Übersicht bisherige Studien

2. Material und Methoden

Dieser Tierversuchsreihe liegt ein bewilligter Tierversuchsantrag zugrunde. Alle Bestimmungen für die Pflege und Nutzung von Versuchstieren wurden erfüllt. Für unsere Versuchsreihe nutzten wir acht gesunde Hausschweine (67±7kg). Die Tiere wurden mit 0,5mg/kg Midazolam und 20mg/kg Ketamin prämediziert. Falls diese Sedierung nicht ausreichte, wurde die Prämedikation mit der halben Dosis wiederholt. Im Anschluss wurde ein venöser Katheter („Venflon“) in eine Ohrvene des Schweines gelegt und die Narkose durch eine Bolus-Injektion von 1mg/kg Propofol eingeleitet. Im Anschluss wurden die Schweine rasch intubiert. Die Narkose wurde mit 1 % Sevofluran, 35µg/kg/h Fentanyl, 1,25mg/kg/h Midazolam und 0,2mg/kg/h Pancuronium aufrechterhalten. Die Beatmung erfolgte maschinell mit einem Sauerstoffanteil von 50%. Das Verhältnis zwischen Inspiration und Exspiration betrug 1:1,5 und der positive end expiratorische Druck wurde mit 5mmHg angesetzt. Die Beatmungstiefe wurde mit 10ml/kg festgelegt, dies betrug im Schnitt ein Inspirationsvolumen von 670ml. Die Beatmungsfrequenz wurde an den exspiratorischen CO²-Gehalt angepasst. Dieser wurde in einem Rahmen zwischen 35 und 45 mmHg festgelegt. Sobald das Schwein komplett narkotisiert war, wurden ihm Schleusen implantiert, um unter Röntgendurchleuchtung Messkatheter zu positionieren. Bei den Gefäßen handelt es sich um beide Aa. carotides comm., die V.jugularis dex./sin. und die V.femoralis dex./sin.. Die Schleusen, die verwendet wurden, waren eine 6F Schleuse für die A. carotis communis rechts, die V.jugularis links und die V. femoralis rechts. F steht dabei für French und beschreibt die Schleusengröße. Im deutschen Sprachraum verwendet man Charrière, wobei 1F beziehungsweise 1 Charrière einem Millimeter äußerem Umfang entspricht. Für die V. jugularis rechts wurde eine 8F Schleuse verwendet. In die A. carotis communis links wurde eine 9F Schleuse implantiert und die V.femoralis links wurde mit einer 14F Schleuse versorgt. Anschließend wurden über die Schleusen verschiedene Katheter eingesetzt. Über die V. jugularis links wurde ein 4-poliger Diagnostikkatheter in das hohe rechte Atrium (HRA) positioniert und für die Stimulation des rechten Vorhofes verwendet. Über die V. jugularis rechts wurde ein Swan-Ganz Katheter (Edwards Lifesciences CCO connected to Vigilance I, Edwards Lifesciences, Irvine, CA, USA) bis zur A. pulmonalis vorgeschoben, um den Druck im rechten Herzen, in der Pulmonalarterie, sowie den Pulmonalarterienverschlussdruck und das Herzzwievolumen zu messen. Des Weiteren wurde in die V. femoralis rechts ein 10-poliger Diagnostikkatheter in den Coronarsinus

Platzierung der Katheter im hohen rechten Atrium und dem Coronarsinus

(Röntgenbild des Herzens in ap Aufnahme)
2.1. Statistik
3. Ergebnisse und Resultate

Da die Resultate vielseitig sind und sich über mehrere Gebiete erstrecken, habe ich sie in fünf verschiedene Bereiche unterteilt. Die Bereiche beinhalten die hämodynamischen Veränderungen, die Induzierbarkeit von Vorhofflimmern, die absolute Refraktärzeit, die unterschiedlichen Kaliumwerte und die EKG-Veränderungen bei Hypothermie im Vergleich zu Normothermie.

3.1 Hämodynamische Veränderungen

<table>
<thead>
<tr>
<th></th>
<th>Normothermie</th>
<th>Hypothermie</th>
<th>p-Wert</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperatur (°C)</td>
<td>38.2 ± 0.3</td>
<td>33.1 ± 0.3</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Herzfrequenz (/min)</td>
<td>89 ± 14.4</td>
<td>64 ± 9.1</td>
<td>< 0.05</td>
</tr>
<tr>
<td>Herzzeitvolumen (HZV)</td>
<td>6.2 ± 1.0</td>
<td>4.3 ± 0.5</td>
<td>< 0.001</td>
</tr>
<tr>
<td>(L/min)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>mittlerer Aortendruck</td>
<td>68 ± 8.9</td>
<td>67 ±10.6</td>
<td>n.s.</td>
</tr>
<tr>
<td>(mAOD in mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mittlerer Pulmonalarteriendruck</td>
<td>18 ± 1.8</td>
<td>21 ± 2.7</td>
<td>< 0.05</td>
</tr>
<tr>
<td>(mPAP in mmHg)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

In unserer Versuchsreihe haben sich diverse signifikante, hämodynamische Veränderungen bei Hypothermie im Vergleich zu Normothermie gezeigt. Wir haben versucht unsere Thermiestufen so konstant wie möglich zu halten. Der Zielwert für Normothermie war dabei 38 °C und der für Hypothermie 33°C. In unseren Experimenten betrug der Normothermiwwert 38.2°C und der Hypothermiwewert 33.1°C. Dabei hat sich die Herzfrequenz von 89 ± 14.4 Schläge pro Minute bei Normothermie, auf 64 ± 9.1 Schläge pro Minute bei Hypothermie reduziert. Dieser Abfall von im Schnitt 25 Schlägen pro Minute ist signifikant (p < 0,05). Der Grund dafür liegt in der Verlangsamung des Metabolismus, welcher sich auch auf die Schrittmacherzellen auswirkt und damit verbunden zu einer langsameren Herzfrequenz führt. Durch den Abfall der Herzfrequenz sinkt auch das Herzzeitvolumen signifikant. Die Auswurfmenge, welche über den
Messkatheter gemessen wurde, sank von 6.2 ± 1.0 L/min bei Normothermie, auf 4.3 ± 0.5 L/min bei Hypothermie. Dies ist ein Abfall von 1.9 L/min und damit umgerechnet um fast 31 %. Das entspricht einer Signifikanz von p < 0.001. Zusätzlich wurden mit Hilfe unserer Druckmesskatheter noch die durchschnittlichen Druckwerte im Bereich der Aorta (mAOD) und der Pulmonalarterie (mPAD) gemessen. Der Druck im Aortenbereich hat sich zwischen Normothermie und Hypothermie nicht signifikant verändert. Die Werte blieben relativ konstant und sind von 68 ± 8.9mmHg bei Normothermie, auf 67±10.6mmHg bei Hypothermie gefallen. Physiologischerweise liegt der mittlere Aortendruck bei Schweinen, ähnlich wie beim Menschen, bei Normotonie bei circa 93mmHg. In unseren Experimentierschweinen ist er jedoch, aufgrund der Narkose (Sevofluran, Ketamin, Fentanyl, Midazolam) erniedrigt. Interessanterweise stieg jedoch der Druck in den Pulmonalarterien, von 18 ± 1.8mmHg bei Normothermie, auf 21 ± 2.7mmHg bei Hypothermie, signifikant an.
3.2. Induzierbarkeit von Vorhofflimmern

Diagramm 6: Vorhofflimmerinduzierbarkeit bei 50ms Burstingprotokoll:
3.3. Absolute Refraktärzeit (ARZ)

Diagramm 7: ARZ (ms) im Thermievergleich:
3.4. Kalium-Shift

Diagramm 8: Arterielle Kaliumwerte bei verschiedenen Thermiestufen in mmol/L:

![Diagramm der arteriellen Kaliumwerte bei Normothermie und Hypothermie in mmol/L.]
3.5. EKG-Veränderungen

Baseline PQ-Zeit:

Diagramm 9: Baseline PQ-Intervall in ms:

![Diagramm 9: Baseline PQ-Intervall in ms](image)

Stimulation-Q Zeit:

Nachdem die physiologische PQ-Zeit bestimmt war, haben wir die PQ-Zeiten bei vorbestimmten Herzfrequenzen, bei Normothermie (38°C) und Hypothermie (33°C) gemessen. Da die Vorhoferregung, also die P-Welle nun nicht mehr physiologisch, sondern durch einen Stimulationskatheter getriggert wurde, sprechen wir von der sogenannten „Stimulation-Q Zeit“ oder kurz Stim-Q. Dabei wurden die Versuchstiere unter Hypothermie bis zu einer Herzfrequenz von 140 Schlägen pro Minute und unter Normothermie bis zu 180 Schlägen pro Minute gepaced. Bei höheren Frequenzen trat eine Blockade durch den AV-Knoten auf und eine 1:1 Überleitung konnte nicht mehr gewährleistet werden. Dass diese Überleitungsstörung bei Hypothermie früher auftritt als...

Diagramm 10: Stim-Q-Zeit in ms:
QRS-Dauer:

Diagramm 11: QRS-Komplex-Dauer in ms:
QT-Dauer:

Diagramm 12: QT-Dauer in ms:
Zusammenfassung der Resultate:
4. Diskussion

5. Literaturverzeichnis

32. Clinical Research in Cardiology Band 96, Nr. 9
