Diplomarbeit

Echokardiographie bei PatientInnen mit STEMI

eingereicht von

Martin Köstenbauer

zur Erlangung des akademischen Grades

Doktor der gesamten Heilkunde

(Dr.med.univ.)

an der

Medizinischen Universität Graz

ausgeführt am

Institut/Klinik für Kardiologie im LKH Graz West

unter der Anleitung von

Assoz.Prof. Priv.-Doz. Dr.med.univ. Dirk von Lewinski

und Departmentleiter Dr. Wolfgang Weihs

Graz am 26.7.2015
Eidesstattliche Erklärung

Ich erkläre ehrenwörtlich, dass ich die vorliegende Arbeit selbstständig und ohne fremde Hilfe verfasst habe, andere als die angegebenen Quellen nicht verwendet habe und die den benutzten Quellen wörtlich oder inhaltlich entnommenen Stellen als solche kenntlich gemacht habe.

Graz am 26.7.2015

Martin Köstenbauer eh
Danksagung

Ich möchte einen besonderen Dank an meinen Betreuer Dr. Wolfgang Weihs richten. Allfällige Fragen wurden mit viel Geduld von ihm beantwortet und er half mir trotz seines hohen Arbeitspensum tatkräftig bei der Erstellung meiner Arbeit.

Außerdem gilt mein Dank meiner Familie. Vor allem meinen Eltern, die mir das Studium der Humanmedizin ermöglichten und mich immer unterstützen. Ein besonderes Dankeschön gebührt meinen Brüdern, die in allen Lebenslagen an meiner Seite standen.
Inhalt

Eidesstattliche Erklärung .. I
Danksagung .. II
Abkürzungen ... V
Abbildungsverzeichnis ... VI
Tabellenverzeichnis ... VIII
Zusammenfassung .. IX
Abstract .. X

Kapitel 1: Einleitung .. - 1 -
 1.1. Definition .. - 1 -
 1.2. Epidemiologie ... - 2 -
 1.3. Pathogenese und Risikofaktoren .. - 3 -
 1.4. Koronare Versorgung des Herzens .. - 5 -
 1.5. Symptome des Myokardinfarktes ... - 7 -
 1.6. Akutdiagnostik .. - 7 -
 1.7. Elektrokardiogramm EKG ... - 9 -
 1.7.1. EKG Veränderungen bei STEMI: ... - 9 -
 1.8. Echokardiographie ... - 11 -
 1.8.1. Physikalische Grundlagen .. - 11 -
 1.8.2. Echokardiographie im Notfall .. - 11 -
 1.8.3. Strain- und Strain-Rate-Messung .. - 12 -
 1.8.4. Speckle-Tracking ... - 13 -
 1.8.5. Herzsegmente ... - 14 -

Kapitel 2: Material und Methoden .. - 17 -
 2.1. PatientInnen ... - 17 -
 2.2. Elektrokardiogramm ... - 18 -
 2.3. Troponinwerte ... - 18 -
 2.4. Echokardiographie .. - 19 -
 2.4.1. TTE ... - 19 -
 2.4.2. Speckle-Tracking Echokardiographie ... - 19 -
 2.5. Koronarangiographie ... - 20 -
 2.6. Statistik ... - 20 -

Kapitel 3: Ergebnisse ... - 21 -
 3.1. PatientInnen ... - 21 -
3.1.1. Patientendaten
3.2.1. Troponinwerte bei Eingefäß- und Mehrgefäßerkrankung
3.2.2. Troponinwerte mit Stenose und Verschluss
3.3. Analyse der Wandbewegungsstörungen
3.3.1. Wandbewegungsstörungen bei Stenose/Verschluss der LAD
3.3.1.1. Wall-Motion-Score
3.3.1.2. Strainanalyse
3.3.1.3. Vergleich Wall-Motion-Score und Strain
3.3.2. Wandbewegungsstörungen bei Stenose/Verschluss des RCX
3.3.2.1. Wall-Motion-Score
3.3.3. Wandbewegungsstörungen bei Stenose/Verschluss der RCA
3.3.3.1. Wall-Motion-Score
3.3.3.2. Strain
3.3.3.3 Vergleich Wall-Motion-Score und Strain
3.4. Vergleich EKG und Koronarangiographie
3.5. Ejection fraction
3.6. Global Strain
3.7. PatientInnen mit Echo bzw. ohne Echo
3.8. Nebenbefunde

Kapitel 4: Diskussion
4.1. Troponinwerte
4.2. Ejection fraction
4.3. Global Strain
4.4. Echokardiographie
4.5. Limitation

Kapitel 5: Zusammenfassung
6. Referenzen
<table>
<thead>
<tr>
<th>Abkürzung</th>
<th>Deutscher Begriff</th>
</tr>
</thead>
<tbody>
<tr>
<td>2D</td>
<td>Zwei-Dimensional</td>
</tr>
<tr>
<td>AINS</td>
<td>Aortenklappeninsuffizienz</td>
</tr>
<tr>
<td>CA</td>
<td>Koronarangiographie</td>
</tr>
<tr>
<td>CK-MB</td>
<td>Kreatinkinase vom Muscle-Brain type</td>
</tr>
<tr>
<td>EF</td>
<td>Ejection fraction</td>
</tr>
<tr>
<td>EKG</td>
<td>Elektrokardiogramm</td>
</tr>
<tr>
<td>ESC</td>
<td>European Society of Cardiology</td>
</tr>
<tr>
<td>KHK</td>
<td>Koronare Herzerkrankheit</td>
</tr>
<tr>
<td>LAD</td>
<td>Left anterior descending = Ramus interventrikularis anterior der linken Koronararterie</td>
</tr>
<tr>
<td>LVH</td>
<td>linksventrikuläre Hypertrophie</td>
</tr>
<tr>
<td>MINS</td>
<td>Mitralklappensuffizienz</td>
</tr>
<tr>
<td>NSTEMI</td>
<td>Nicht-ST-Strecken Hebungs Infarkt</td>
</tr>
<tr>
<td>PCI</td>
<td>Perkutane Koronarintervention</td>
</tr>
<tr>
<td>RCA</td>
<td>Right coronary artery = Rechte Koronararterie</td>
</tr>
<tr>
<td>RCX</td>
<td>Ramus circumflexus der linken Koronararterie</td>
</tr>
<tr>
<td>STEMI</td>
<td>ST-Strecken Hebungs Infarkt</td>
</tr>
<tr>
<td>TTE</td>
<td>Transthorakale Echokardiographie</td>
</tr>
</tbody>
</table>
Abbildungsverzeichnis

Abbildung 2: Taschenatlas der Pathophysiologie, Silbernagl Stefan, Lang Florian, Stuttgart [u.a.]: Thieme, 4 Auflage, 2013

Abbildung 3: Gefäßversorgung des Herzens, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 4: EKG Veränderung bei Hinterwandinfarkt, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 5: 16-Segment Modell des Herzens, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 6: Wall-Motion-Score bei Eingefäßerkranckung mit Stenose, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 7: Strainanalyse bei Eingefäßerkranckung mit Stenose, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 8: Wall-Motion-Score bei Eingefäßerkranckung mit Verschluss, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 9: Strainanalyse bei Eingefäßerkranckung mit Verschluss, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 10: Wall-Motion-Score bei Mehrgfäßerkranckung, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 11: Strainanalyse bei Mehrgfäßerkranckung, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 12: Wall-Motion-Score bei Stenose/Verschluss LAD, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 13: Strainanalyse bei Stenose/Verschluss LAD, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 14: Wall-Motion-Score bei Stenose/Verschluss RCX, mit freundlicher Genehmigung von Dr. Wolfgang Weihs

Abbildung 15: Wall-Motion-Score bei Stenose/Verschluss RCA, mit freundlicher Genehmigung von Dr. Wolfgang Weihs
Abbildung 16: Strainanalyse bei Stenose/Verschluss RCA, mit freundlicher Genehmigung von Dr. Wolfgang Weihs
Tabellenverzeichnis

Tabelle 1: modifiziert nach Waldeyer – Anatomie des Menschen, Waldeyer Anton, Anderhuber Friedrich, Berlin [u.a.]: de Gruyter, 19. Auflage, 2012

Tabelle 2: modifiziert nach Waldeyer – Anatomie des Menschen, Waldeyer Anton, Anderhuber Friedrich, Berlin [u.a.]: de Gruyter, 19. Auflage, 2012

Tabelle 3: modifiziert nach EKG-Kurs für Isabel, Hans-Peter Schuster, Hans-Joachim Trappe, Stuttgart: Thieme, 5 Auflage, 2009

Tabelle 4: modifiziert nach Praxis der Echokardiographie, Frank a. Flachskampf, Stuttgart: Georg Thieme Verlag, 2 Auflage, 2002

Tabelle 5: Anzahl der PatientInnen

Tabelle 6: Verteilung Männer/Frauen

Tabelle 7: Troponinananstieg bei Ein- bzw. Mehrgefäßerkrankung

Tabelle 8: Troponinananstieg bei Stenose bzw. Verschluss

Tabelle 9: Anzahl der betroffenen Segmente

Tabelle 10: Betroffene Segmente nach STEMI

Tabelle 11: Wall-Motion-Score vs. Strain LAD

Tabelle 12: Wall-Motion-Score vs. Strain RCA

Tabelle 13: Übereinstimmung EKG und Koronarangiographie

Tabelle 14: Ejection fraction nach STEMI

Tabelle 15: Global Strain nach STEMI
Zusammenfassung

Hintergrund:

Methodik:

Ergebnisse:

Schlussfolgerung:
Die Echokardiographie mit Beurteilung des Wall-Motion-Score und der Strainanalyse hat bezüglich der Vorhersage, ob eine Eingefäßerkrankung mit Stenose oder Verschluss oder ob eine Mehrgefäßerkrankung vorliegt keine signifikante Aussagekraft.
Abstract

Background:
The goal of this paper is to evidence a difference between an occluded and stenosized coronary vessel in patients undergoing a myocardial infarction with ST-segment elevation by using echocardiography. The hypothesis is, that if a coronary vessel is occluded, more segments of the heart muscle will be afflicted with a movement disorder than with a stenosized vessel.

Methods:
Over one year data of 171 patients (133 male, 38 female) for this retrospective study was collected. The echocardiographic findings of 92 of these patients were saved and the strain analyze was performed for 74 of them. There were three different groups: patients with one-vessel disease and stenosis (15 patients, 11 male, 4 female), patients with one-vessel disease and occlusion (29 patients, 25 male, 4 female) and patients with multi-vessel disease (48 patients, 41 male, 7 female). We compared the affected segments between the groups. Furthermore the wall-motion-score was compared with the strain analyses.

Results:
With the wall-motion-score and the affected segments it was not possible to differ between a stenosized and an occluded coronary vessel or between a one-vessel disease and a multi-vessel disease. The strain analysis did not bring any benefit. However, the analysis of the ejection fraction and the global strain showed, that there is also no significant difference among the groups either.

Conclusion:
The echocardiography together with the evaluation of the wall-motion-score and the strain analysis does neither indicate a significant difference between a one-vessel disease with a stenosized or occluded vessel, nor between a one-vessel and a multi-vessel disease.
Kapitel 1: Einleitung

1.1. Definition

Für die Diagnose Herzinfarkt muss zusätzlich eines der folgenden Kriterien zutreffen:

-Symptome der Ischämie

-neu aufgetretener Linksschenkelblock oder ST-T Veränderungen

-Auftreten eines pathologischen Q im EKG

-neu aufgetretene Wandbewegungsstörungen

-Detektion eines intracoronaren Thrombus mithilfe der Angiographie oder im Zuge der Autopsie
Je nach EKG-Veränderungen wird zwischen einem Herzinfarkt mit einer ST-Streckenhebung (=STEMI – ST-segment elevation myocardial infarction) und ohne ST-Streckenhebung (=NSTEMI – non-ST-segment elevation myocardial infarction) unterschieden.

Die Pathologie definiert einen Myokardinfarkt als den Untergang von Herzmuskelzellen infolge einer länger andauernden Ischämie. Dieser Zelltod tritt jedoch nicht unmittelbar nach der Ischämie auf, sondern frühestens nach 20 Minuten. Bis es zur vollständigen Nekrose kommt, dauert es ungefähr zwei bis vier Stunden, je nachdem ob Kollateralen bestehen und wie empfindlich die Myocyten auf die Ischämie reagieren.(1)

1.2. Epidemiologie

Weltweit sterben jedes Jahr über sieben Millionen Menschen infolge einer koronaren Herzkrankheit. Damit stellt diese die häufigste Todesursache dar. In Europa wird jeder siebente Mensch an einem Myokardinfarkt versterben.

1.3. Pathogenese und Risikofaktoren

Ursache eines Myokardinfarktes ist die durch generalisierte Atherosklerose bedingte Koronarsklerose. Meist entstehen Symptome einer koronarer Herzerkrankung, wenn das Lumen der Gefäße zu mindestens 70% eingeengt ist. Weiters kann ein Infarkt durch die Ruptur eines atherosklerotischen Koronarplaques und die darauf folgende Ansammlung von Thrombozyten und die Entwicklung eines Fibrinthrombus ausgelöst werden.

Der histologische Aufbau einer gesunden Koronararterie besteht aus drei Schichten, und zwar von innen nach außen der Intima (Tunica intima), der Media (Tunica media) und der Adventitia.
Auslöser der Atherosklerose:

- Oxidativer Stress führt zu einer Schädigung des Endothels und in weiterer Folge zur Permeabilitätsstörung
- In der Intima sammelt sich LDL-Cholesterin an, welches oxidiert
- Leukozyten wandern unter das Endothel ein
- Die Atherombildung beginnt mit der intrazellulären Lipidakkumulation, Makrophagen nehmen das oxidierte LDL auf. Diese Makrophagen werden zu Schaumzellen.
- In das Atherom wandern glatte Muskelzellen ein und proliferieren.
- Der atherosklerotische Plaque kalzifiziert
- Wenn der Plaque rupturiert und thrombogene Substanzen frei werden, kann es zum akuten Koronarsyndrom kommen(3)

Abbildung 2 Pathogenese der Atherosklerose
Risikofaktoren:

Hauptfaktoren:

- Hypertonie
- Hyperlipidämie

Wichtige Nebenfaktoren:

- Nikotinabusus
- Adipositas
- Mangelnde körperliche Bewegung
- Diabetes mellitus (4)

1.4. Koronare Versorgung des Herzens

Der dauernd tätige Herzmuskel wird durch die subepikardialen Koronararterien mit Sauerstoff und Nährstoffen versorgt. Diese entspringen im aufgetriebenen Sinus aortae und nach ihrer Lage im Sulcus coronary unterscheidet man zwei Koronararterien (eine rechte und eine linke), die sich dann weiter aufteilen und von Mensch zu Mensch stark variieren können. Neben einer offiziellen Terminologia Anatomica haben sich in der ärztlichen Praxis Begriffe etabliert, die vor allem auf funktionelle und (patho-)physiologische Aspekte Rücksicht nehmen.(5)

<table>
<thead>
<tr>
<th>Terminologia Anatomica 1998</th>
<th>Klinischer Sprachgebrauch</th>
<th>Gängige Abkürzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. coronaria sinistra</td>
<td>A. coronaria sinistra</td>
<td>LCA</td>
</tr>
<tr>
<td>R. interventricularis anterior</td>
<td>R. interventricularis anterior</td>
<td>RIVA oder LAD</td>
</tr>
<tr>
<td>R. lateralis</td>
<td>Diagonaläste</td>
<td>D₁-Dₙ</td>
</tr>
<tr>
<td>Rr. Interventriculares septales</td>
<td>vordere Septaläste</td>
<td>S₁-Sₙ</td>
</tr>
<tr>
<td>R. circumflexus</td>
<td>R. circumflexus</td>
<td>RCX</td>
</tr>
<tr>
<td>R. marginalis sinister</td>
<td>Marginaläste</td>
<td>M₁-Mₙ</td>
</tr>
<tr>
<td>A. coronaria dextra</td>
<td>A. coronaria dextra</td>
<td>RCA</td>
</tr>
<tr>
<td>R. marginalis dexter</td>
<td>RV-Äste</td>
<td>-</td>
</tr>
<tr>
<td>R. interventricularis posterior</td>
<td>R. interventricularis posterior</td>
<td>RIVP oder PDA</td>
</tr>
<tr>
<td>RR. Interventriculares septales</td>
<td>hintere Septaläste</td>
<td>-</td>
</tr>
</tbody>
</table>

Tabelle 1: Nomenklatur der Koronararterien

Abbildung 3 Versorgungsgebiet der rechten und linken Koronararterie. Mit freundlicher Genehmigung von Dr. Wolfgang Weihs
Verteilungstypen:

<table>
<thead>
<tr>
<th>Typ</th>
<th>Häufigkeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extremer Rechtstyp</td>
<td>~ 5%</td>
</tr>
<tr>
<td>Rechtstyp</td>
<td>60-85%</td>
</tr>
<tr>
<td>Linkstyp</td>
<td>10-15%</td>
</tr>
<tr>
<td>Ausgeglichener Versorgungstyp</td>
<td>10-20%</td>
</tr>
</tbody>
</table>

Tabelle 2 Verteilungstypen der Koronararterien

Da zwischen den Ästen der Koronargefäße einige Anastomosen ausgebildet sind, kann sich im Falle einer Koronaren Herzerkrankung ein unterschiedlich stark ausgeprägter Kollateralkreislauf ausbilden. (5)

1.5. Symptome des Myokardinfarktes

Bei etwa 20 bis 30% der PatientInnen erzeugt der Myokardinfarkt keine Symptome. Man spricht dann von einem „stummen Infarkt“.

Das Hauptsymptom ist der stark ausgeprägte Thoraxschmerz, der meist retrosternal empfunden wird, aber auch u.a. in den linken Arm, das Unterkiefer, den Hals oder den Rücken ausstrahlen kann. Oft wird der Schmerz von Todesangst, Schwäche, Kaltschweißigkeit, Blässe und Übelkeit mit Erbrechen begleitet. (6)

1.6. Akutdiagnostik

Bei einem/einer Patienten/Patientin, der/die seit mehr als 20 Minuten Thoraxschmerzen spürt und die sich auf die Gabe von Nitroglycerin nicht bessern, wird die Arbeitsdiagnose „Myokardinfarkt“ getroffen. Weitere wichtige Hinweise sind eine bekannte koronare Herzerkrankung und ein ausstrahlende Schmerz in das Unterkiefer, den Hals, den linken Arm oder in die epigastrische Region. Ältere PatientInnen, Diabetiker/innen oder Frauen haben oft weniger stark ausgeprägte Symptome wie Übelkeit/Erbrechen, Kurzatmigkeit, Palpitationen oder Bewusstlosigkeit. (2)
Als erste Maßnahme empfehlen die Guidelines der ESC das schnellstmögliche EKG-Monitoring um einen STEMI zu diagnostizieren. Dabei sollte sich die ST-Segment Erhöhung in zwei benachbarten Ableitungen zeigen und bei Männern unter 40 Jahren größer als 0.25 mV, bei Männern über 40 Jahren größer als 0.20 mV und bei Frauen größer als 0.15 mV in den Ableitungen V2-V3 und oder größer als 0.1 mV in anderen Ableitungen sein. Bei PatientInnen mit inferiorem Herzinfarkt muss auch an die Rechtsherzableitungen (V3R und V4R) gedacht werden. Eine ST-Segment Erniedrigung in V1 bis V3 kann auf eine myokardiale Ischämie hinweisen.

Besteht nun bei PatientInnen der Verdacht eines Myokardinfarktes, im EKG zeigt sich eine ST-Streckung Hebung oder ein neu aufgetretener Linksschenkelblock, muss so schnell wie möglich die Reperfusionstherapie erfolgen. Wenn das EKG nicht eindeutig ist, sollte es wiederholt werden, und wenn möglich, mit vorangegangen EKG Untersuchungen verglichen werden. Weitere Routine ist die Untersuchung der Blutparameter, jedoch sollte dadurch die Einleitung der Reperfusionstherapie nicht verzögert werden.

1.7. Elektrocardiogramm EKG

Die EKG-Untersuchung erfolgt über auf die Haut aufgesetzte Elektroden. Die Standarduntersuchung besteht aus 12 Ableitungen:

- 6 Extremitätenableitungen (I,II,III, aVR, aVL, aVF), die die elektrischen Abläufe in der Frontalebene zeigen
- 6 Brustwandableitungen (V1 bis V6), die die elektrischen Vorgänge auf die Horizontalebene projizieren (7)

Diese Ableitungen zeigen die verschiedenen Anteile der Herzwände:

<table>
<thead>
<tr>
<th>Ableitung</th>
<th>Wandabschnitt</th>
<th>Versorgendes Gefäß</th>
</tr>
</thead>
<tbody>
<tr>
<td>II, III, aVF</td>
<td>Diaphragmaler Anteil der Hinterwand des linken Ventrikels</td>
<td>RCA</td>
</tr>
<tr>
<td>I, aVL</td>
<td>Seitenwand des linken Ventrikels</td>
<td>RCX</td>
</tr>
<tr>
<td>V1-V2</td>
<td>Vorderwand der Ventrikel</td>
<td>LAD</td>
</tr>
<tr>
<td>V3-V4</td>
<td>Vorderwand des linken Ventrikels</td>
<td>LAD</td>
</tr>
<tr>
<td>V5-V6</td>
<td>Tiefe Seitenwand des linken Ventrikels und Herzspitze</td>
<td>RCX</td>
</tr>
</tbody>
</table>

Tabelle 3: EKG-Ableitungen, betroffener Wandabschnitt und versorgendes Gefäß

1.7.1. EKG Veränderungen bei STEMI:

Im Verlauf eines Myokardinfarktes zeigen sich im EKG unterschiedliche Stadien. Im ersten Stadium, dem sogenannten Initialstadium, entwickelt sich ein sogenanntes „Erstickungs-T“, also eine hochpositive, schmale T-Welle, die jedoch nur sehr kurz beobachtbar ist. Als nächstes kommt es zur „ST-Hebung“, die sich in den Ableitungen der betroffenen Infarktarialen zeigt. Diese ST-Hebung geht normalerweise aus der absteigenden R-Zacke hervor (Differenzialdiagnose Perikarditis mit einer ST-Hebung aus der aufsteigenden S-Zacke). Wird der Infarkt nicht behandelt, beginnt nach einigen Tagen das Zwischenstadium, gefolgt vom

Abbildung 4: EKG bei akutem Hinterwandinfarkt. ST-Streckenhebung in den Ableitungen II, III und aVF mit freundlicher Genehmigung von Dr. Wolfgang Weihs
1.8. Echokardiographie

1.8.1. Physikalische Grundlagen

Ultraschallwellen sind Schallwellen mit einer höheren Frequenz, als es das menschliche Ohr wahrnehmen kann. In der Medizin werden Frequenzen zwischen 1 und 50 Megahertz verwendet, wobei meist 2,5 bis 15 Megahertz ausreichen.

Läuft die Ultraschallwelle durch das menschliche Gewebe wird sie durch Absorption, Reflexion, Brechung, Streuung und Divergenz geschwächt. Das Bild entsteht nach dem Puls-Echo-Prinzip. Nach der Aussendung eines Ultraschallpulses und dem darauffolgenden Empfangen des Echos, kann aus der Laufzeit des Pulses errechnet werden aus welcher Tiefe das Echo kommt. (8)

1.8.2. Echokardiographie im Notfall

Hat ein/e Patient/in typische Symptome, die auf einen Myokardinfarkt hinweisen, aber zweifelhafte Laborparameter, atypische Symptome mit eindeutigen Laborparametern, Herzschriftmachertherapie, Linksschenkelblock im EKG, ein systolisches Herzgeräusch, Schock mit Rechtsherzinfarkt, eine Postmyokardinfarkt-Perikarditis, non-Q-wave-MI, einen echten Hinterwandinfarkt oder besteht der Verdacht auf einen linksventrikulären Thrombus, kann die echokardiographische Untersuchung hilfreich sein und die Entscheidungsfindung für die bestmögliche Therapie für den/die Patienten/in erleichtern. (9)
Eine vollständige echokardiographische Untersuchung besteht aus folgenden Techniken:

- Zweidimensionale (2D-) Technik: zur Beurteilung der Herzstrukturen und der Funktion des Herzmuskels
- Eindimensionale Methode (M-Mode): zur zeitlichen Auflösung
- Dopplertechnik: intrakardiale Flussgeschwindigkeiten und –volumina
 - PW-Doppler: lokale Flüsse mit niedrigen Geschwindigkeiten
 - CW-Doppler: misst höchste Geschwindigkeiten entlang einer Sektorlinie
 - Farbdoppler: zur Identifizierung von intrakardialen Flüssen bei z.B. Klappeninsuffizienzen, -stenosen, Shunts) (10)

1.8.3. Strain- und Strain-Rate-Messung

Die Strain- und Strain-Rate Messung dient dazu, die lokale Myokardfunktion zu beurteilen. Hier wird die Verformung der Myokardmuskulatur an einer bestimmten Position des Messfensters gemessen.

Der Strain berechnet sich folgendermaßen:

\[
\text{Strain}(\%) = \frac{(L_t - L_0)}{L_0}
\]

wobei \(L_t\) die Länge zu einer Zeit \(t\) und \(L_0\) die ursprüngliche Länge zum Zeitpunkt 0 darstellt. (11)

Die E-Welle beschreibt die frühdiastolische Dehnung, die A-Welle die spätdiastolische Dehnung.

<table>
<thead>
<tr>
<th></th>
<th>Systole [s-1]</th>
<th>E-Welle [s-1]</th>
<th>A-Welle [s⁻¹]</th>
<th>Longitudinaler Strain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lateral</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apikal</td>
<td>-1,93/-.070</td>
<td>2,23/ 1,09</td>
<td>0,61/-.14</td>
<td>-0,16/-.04</td>
</tr>
<tr>
<td>medial</td>
<td>-1,25/-.040</td>
<td>2,45/-.029</td>
<td>1,30/-.117</td>
<td>-0,17/-.02</td>
</tr>
<tr>
<td>basal</td>
<td>-1,23/-.030</td>
<td>2,16/-.095</td>
<td>1,12/-.057</td>
<td>-0,19/-.05</td>
</tr>
<tr>
<td>Septal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apikal</td>
<td>-0,98/-.031</td>
<td>2,12/-.052</td>
<td>0,70/-.026</td>
<td>-0,15/-.005</td>
</tr>
<tr>
<td>medial</td>
<td>-1,33/-.019</td>
<td>2,01/-.033</td>
<td>1,22/-.063</td>
<td>-0,23/-.003</td>
</tr>
<tr>
<td>basal</td>
<td>-1,15/-.018</td>
<td>2,02/-.030</td>
<td>1,27/-.044</td>
<td>-0,02/-.003</td>
</tr>
<tr>
<td>Anteroseptal</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apikal</td>
<td>-1,04/-.045</td>
<td>1,86/-.071</td>
<td>0,91/-.017</td>
<td>-0,14/-.008</td>
</tr>
<tr>
<td>medial</td>
<td>-1,43/-.027</td>
<td>2,11/-.080</td>
<td>1,28/-.046</td>
<td>-0,21/-.003</td>
</tr>
<tr>
<td>basal</td>
<td>-1,22/-.022</td>
<td>1,54/-.038</td>
<td>1,11/-.059</td>
<td>-0,18/-.003</td>
</tr>
<tr>
<td>Posterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apikal</td>
<td>-1,32/-.040</td>
<td>2,04/-.094</td>
<td>0,97/-.086</td>
<td>-0,14/-.005</td>
</tr>
<tr>
<td>medial</td>
<td>-1,13/-.051</td>
<td>1,86/-.065</td>
<td>1,05/-.070</td>
<td>-0,17/-.007</td>
</tr>
<tr>
<td>basal</td>
<td>-1,54/-.039</td>
<td>2,67/-.074</td>
<td>0,78/-.047</td>
<td>-0,25/-.008</td>
</tr>
<tr>
<td>Anterior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apikal</td>
<td>-1,32/-.089</td>
<td>1,42/-.074</td>
<td>0,91/-.052</td>
<td>-0,13/-.001</td>
</tr>
<tr>
<td>medial</td>
<td>-1,17/-.042</td>
<td>1,95/-.049</td>
<td>0,99/-.067</td>
<td>-0,16/-.004</td>
</tr>
<tr>
<td>basal</td>
<td>-1,51/-.033</td>
<td>1,97/-.053</td>
<td>1,60/-.058</td>
<td>-0,24/-.006</td>
</tr>
<tr>
<td>Inferior</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>apikal</td>
<td>-1,34/-.026</td>
<td>1,55/-.085</td>
<td>0,97/-.077</td>
<td>-0,21/-.006</td>
</tr>
<tr>
<td>medial</td>
<td>-1,32/-.060</td>
<td>1,66/-.031</td>
<td>1,31/-.077</td>
<td>-0,22/-.007</td>
</tr>
<tr>
<td>basal</td>
<td>-1,14/-.015</td>
<td>1,90/-.046</td>
<td>1,00/-.045</td>
<td>-0,20/-.003</td>
</tr>
</tbody>
</table>

Tabelle 4 Longitudinale Strain Rate in s⁻¹ und longitudinaler Strain (dimensionslos in der rechten Spalte) bei Probanden, n=10, mittleres Alter 30 +/- 7.1

1.8.4. Speckle-Tracking

Als Speckle werden myokardiale Binnenechos bezeichnet. Für das Tracking System wird als Untersuchungsmethode die B-Mode des Ultraschalls verwendet (12)

Beim Speckle-Tracking wird vom Untersuchenden eine Region of Interest (ROI) ausgewählt. Diese ROI besteht aus 20 bis 40 Pixel, die Kernels genannt werden. Diese Kernels sind relativ stabil über die Zeit. Durch die „Bewegung“ dieser Kernels während der Herzaktivität kann die Funktion des Myokards einfach evaluiert und quantifiziert werden. (13)
1.8.5. Herzsegmente

Abbildung 5: 16-Segment-Einteilung des Herzens mit freundlicher Genehmigung von Dr. Wolfgang Weihs
Im 17-Segment-Modell gibt es noch ein zusätzliches Segment, welches als „Kappe“ den anderen 16 Segmenten aufsitzt. (12)

Zur Beurteilung wird der Wall-Motion-Score verwendet. Dabei sollte jedes Segment einzeln und in unterschiedlichen Schnittbildern begutachtet werden. Zur Bewertung wird folgendes System verwendet:
1 = normal oder hyperkinetisch
2 = hypokinetisch
3 = akinetisch (z.B. bei einer Narbe)
4 = dyskinetisch (systolische „Verdünnung“ oder Dehnung, z.B. bei einem Aneurysma) (11)
Kapitel 2: Material und Methoden

2.1. PatientInnen

Das Patientengut besteht aus jenen 214 Personen, die zwischen dem 01.01.2013 und dem 17.06.2014 im LKH Graz West mit Verdacht auf STEMI im Herzkatheterlabor behandelt wurden.

Eingeschlossen wurden PatientInnen ab dem vollendeten 18. Lebensjahr mit erstmaligen STEMI gemäß der Kriterien der European Society of Cardiology, also PatientInnen mit Stenocardien, einem positiven Troponin I (> 0,160 ng/ml) und einer signifikanten ST-Hebung im EKG.

Ausgeschlossen wurden PatientInnen, bei denen kein relevanter Verschluss eines Koronargefäßes nachweisbar war, weiters PatientInnen mit NSTEMI, Myocarditis und diejenigen die nur an einer Dyskardie oder hypertensiven Krise litten. Ein weiterer Ausschlussgrund war, wenn keine echokardiographischen Untersuchungsbefunde zur Verfügung standen.

Das Studienprotokoll wurde von der Ethikkommission der Medizinischen Universität Graz genehmigt.
2.2. Elektrokardiogramm

Als Subanalyse erfolgt die Untersuchung der Übereinstimmung der EKG Befunde mit den durchgeführten echokardiographischen und koronarangiographischen Befunden. Das EKG wird auf das Vorliegen von ST-Hebungen, T-Negativierungen, vorliegendem Schenkelblock oder ob ein normales EKG vorliegt, untersucht. Die verschiedenen EKG Ableitungen lassen sich unterschiedlichen Herzabschnitten zuordnen. Die Ableitungen V1-V4 zeigen die Vorderwand, welche normalerweise durch die LAD versorgt wird, die Ableitungen V5-V6, I und aVL zeigen die Seitenwand, versorgt meist durch den CX und die Ableitungen II, III und aVF zeigen die Hinterwand, welche durch die RCA versorgt wird. Die Auswertung erfolgt durch den jeweils zuständigen Arzt bzw. zuständige Ärztin. Bei fehlendem Befund wird das EKG mithilfe der Ärzte der kardiologischen Ambulanz nachbefundet.

2.3. Troponinwerte

Im Zuge der Datenanalyse werden auch die maximalen Troponinwerte der PatientInnen aufgezeichnet. Ein positiver Wert besteht dabei ab einer Konzentration von > 0,160 ng/ml Blut.

Da laut Definition der ESC ein Herzinfarkt mit einer Erhöhung der Troponinwerte einhergeht, werden nur PatientInnen in die Studie mit einbezogen, deren Werte über 0,160 ng/ml liegen.
2.4. Echokardiographie
2.4.1. TTE

Für die Studie wurden das Datum, die Linksventrikelfunktion, mögliche Wandbewegungsstörungen und deren genaue Lokalisation aus den Befunden ausgelesen und ausgewertet. Ob die echokardiographischen Befunde mit der darauffolgenden Koronarangiographie übereinstimmen, wurde mit Hilfe des Departmentleiters für Kardiologie und Intensivmedizin, Dr. Wolfgang Weihs, oder den diensthabenden Ärzten und Ärztinnen geklärt und nachbefundet.

Alle PatientInnen wurden nochmals von Dr. Wolfgang Weihs, ohne Kenntnis des koronarangiographischen Befundes, neu befundet. Dabei wurde ein besonderes Augenmerk auf die Lokalisation der Wandbewegungen gelegt und mit Hilfe des 16-Segment Modell (siehe Seite 29, Abschnitt 1.7.5. Herzsegmente) dokumentiert.

2.4.2. Speckle-Tracking Echokardiographie

2.5. Koronarangiographie

2.6. Statistik

Für die statistische Untersuchung wurden die Patientendaten aus Medocs ausgelesen und die echokardiographischen und koronarangiographischen Untersuchungsbefunde ausgewertet. Die genauen Fragestellungen wurden mit Herrn Dr. Wolfgang Weihs ausgearbeitet. Die systematische Sammlung aller Daten und deren Auswertung und Darstellung wurde mittels Microsoft Excel durchgeführt.

Als Entscheidungsgrundlage zur Überprüfung auf statistische Signifikanz wurde der Student'sche t-Test herangezogen. Die zugrunde liegende Nullhypothese lautet: H₀: \(\mu = \mu_0 \), oder anders formuliert: die Nullhypothese lautet, dass sich die Mittelwerte zweier Stichproben nicht signifikant voneinander unterscheiden. Nimmt der p-Value (die Wahrscheinlichkeit wie stark sich die Mittelwerte „ähneln“) Werte kleiner des gewünschten Signifikanzlevels (hier: 5%) an, so kann die Nullhypothese nicht akzeptiert werden bzw. es existiert ein signifikanter Unterschied der beiden Stichproben. In allen zugrunde liegenden statistischen t-Tests wurde eine beidseitige Teststatistik (da signifikante Unterschiede der Mittelwerte sowohl nach Oben als auch nach Unten in der Verteilung als möglich angesehen werden) verwendet. Des Weiteren wird aufgrund der unterschiedlich großen Anzahl der beiden zu testenden Stichproben eine unterschiedlich große Varianz der Daten angenommen. Die technische Umsetzung der Tests erfolgte in Microsoft Excel.
Kapitel 3: Ergebnisse

3.1. PatientInnen

Tabelle 5: Anzahl der PatientInnen

3.1.1. Patientendaten

Unter den 171 untersuchten PatientInnen waren 133 (77,78 %) Männer und 38 (22,22 %) Frauen.

Der Altersdurchschnitt aller PatientInnen liegt bei 64,75 Jahren, wobei der/die Jüngste/r 29 und die/der Älteste/r 96 Jahre alt war. Der Median liegt bei 65 Jahren, die Standardabweichung beträgt 13,66 Jahre.

Unter den Frauen war der Altersdurchschnitt bei 70,68 +/- 13,48 Jahren und unter den Männern bei 63,06 +/- 13,28 Jahren. Die jüngste bzw. älteste Frau waren 49 und 95 Jahre alt, der jüngste bzw. älteste Mann 29 und 96 Jahre alt.
Innerhalb der Gruppe der PatientInnen mit Eingefäßerkrankung liegt der Altersschnitt derer, die an einer Stenose leiden bei 60,91 +/- 13,96 Jahren, bei jenen mit einem Verschluss eines Gefässes bei 61,1 +/- 13,62 Jahren und in der Gruppe mit PatientInnen mit einer Mehrgefäßerkrankung bei 67,51 +/- 13 Jahren.

3.2. Troponinwerte

3.2.1. Troponinwerte bei Eingefäß- und Mehrgefäßerkrankung

Für die Analyse wurden die Troponinwerte in Gruppen von <1,<5,<10,<25,<50,<100,<400 und <1000 ng/ml einteilt und die PatientInnen in 2 Gruppen geteilt, in eine mit Eingefäß- und in die zweite mit Mehrgefäßerkrankung.

Zwischen den zwei Gruppen mit Eingefäß- bzw. Mehrgefäßerproblematik zeigt sich kein signifikanter Unterschied in Hinblick auf den Troponinanstieg. Der p-Wert liegt bei 0,487.

Tabelle 7: Troponinwerte (in ng/ml) bei Ein- bzw. Mehrgefäßerkrankung
3.2.2. Troponinwerte mit Stenose und Verschluss

Die Troponinwerte wurden wiederum in die obengenannten Gruppen eingeteilt und die PatientInnen in zwei Gruppen, die erste mit stenosiertem, die zweite mit verschlossenem Gefäß.

Es zeigt sich, dass das Troponin nach einem Gefäßverschluss signifikant stärker ansteigt als nach einer Stenose. Der p-Wert ist kleiner als 0,01.

Tabelle 8: Troponinwerte (in ng/ml) bei Gefäßverschluss bzw. Stenose
3.3. Analyse der Wandbewegungsstörungen

Für die Strainanalyse wird im Alltag das 17-Segmentmodell verwendet. Zur Vergleichbarkeit mit dem Wall-Motion-Score wurde das 17. Segment aus der Analyse herausgenommen. Hier sprechen Werte größer/gleich „-10%“ für eine eingeschränkte Motilität eines Segmentes. Es wurde wiederum die Anzahl und die betroffenen Segmente untersucht, die betroffen sind, wenn die LAD, CX oder RCA stenosiert oder verschlossen sind.

Im weiteren Verlauf wurde der Wall-Motion-Score mit der Strainanalyse verglichen.

Bei einer Eingefäßerkrankung mit Stenose waren beim Wall-Motion-Score durchschnittlich 4,73 und bei der Strainanalyse 5,3 Segmente von einer Bewegungseinschränkung betroffen. Bei PatientInnen mit Eingefäßerkrankung mit
einem Verschluss eines Gefäßes waren im Wall-Motion-Score 5,31 Segmente im Vergleich zu 7,29 Segmenten in der Strainanalyse bewegungstechnisch eingeschränkt. Bei einer Mehrgefäßerkrankung zeigen sich 5,61 Segmente in der Strainanalyse und 5,66 Segmente im Wall-Motion-Score pathologisch.

Im Wall-Motion-Score gibt es bezüglich der Anzahl der betroffenen Segmente keinen signifikanten Unterschied zwischen einer Eingefäßerkrankung mit Stenose oder mit Verschluss (p-Wert = 0,293) bzw. zwischen Ein- und Mehrgefäßerkrankung (p-Wert = 0,2)

In der Strainanalyse zeigen sich ebenfalls keine signifikanten Unterschiede bei Stenose verglichen mit Verschluss (p-Wert = 0,297) und zwischen Ein- und Mehrgefäßerkrankung (p-Wert = 0,274).

Tabelle 10: Betroffene Segmente nach STEMI

![Graphik zur Darstellung der Betroffenheit von Segmenen nach STEMI](image-url)
Abbildung 6: W-M-S bei Eingefäßerkrankung mit Stenose

Abbildung 7: Strainanalyse bei Eingefäßerkrankung mit Stenose

Abbildung 8: W-M-S bei Eingefäßerkrankung mit Verschluss

Abbildung 9: Strainanalyse bei Eingefäßerkrankung mit Verschluss

Abbildung 10: W-M-S bei Mehrgefäßerkrankung

Abbildung 11: Strainanalyse bei Mehrgefäßerkrankung
3.3.1. Wandbewegungsstörungen bei Stenose/Verschluss der LAD

3.3.1.1. Wall-Motion-Score

Abbildung 12: W-M-S bei Stenose/Verschluss der LAD

3.3.1.2. Strainanalyse
In der Strainanalyse gab es kein Segment das nicht betroffen war, wenn die LAD stenosiert oder verschlossen war. Die Segmente 3,4 und 9 waren am seltensten, die Segmente 7,8 und 13 bis 16 am häufigsten betroffen.

Abbildung 13: Strainanalyse bei Stenose/ Verschluss der LAD
3.3.1.3. Vergleich Wall-Motion-Score und Strain
Vergleicht man den Wall-Motion-Score mit der Strainanalyse bei einer Stenose bzw. Verschluss der LAD, zeigt sich, dass prinzipiell in der Strainanalyse mehr Segmente als im Wall-Motion-Score von einer Bewegungseinschränkung betroffen sind. Vor allem die Segmente 2,3,4,5,6 und 9 waren im Wall-Motion-Score nie betroffen, jedoch bei der Strainanalyse bei einigen PatientInnen, obwohl die Segmente 2,3 und 4 nicht von der LAD versorgt werden.

Tabelle 11: Wall-Motion-Score bzw. Strainanalyse
3.3.2. Wandbewegungsstörungen bei Stenose/Verschluss des RCX

3.3.2.1. Wall-Motion-Score

Hierbei zeigte sich, dass mit Hilfe des Wall-Motion-Scores bei den Segmenten 1, 2, 3, 6, 7, 8, 9 und 13 nie Wandbewegungsstörungen festgestellt werden konnten. Die Segmente 4, 5, 10, 11 und 15 waren hingegen bei allen PatientInnen betroffen.
3.3.3. Wandbewegungsstörungen bei Stenose/Verschluss der RCA

3.3.3.1. Wall-Motion-Score

Im Wall-Motion-Score zeigt sich, dass besonders die Segmente 2,3,4,9 und 10 bei einem Herzinfarkt betroffen sind. Die Segmente 1,6,7,8,11 und 12 waren hingegen nie bewegungstechnisch eingeschränkt.

3.3.3.2. Strain
In der Strainanalyse erkennt man, dass nur ein Segment von Bewegungseinschränkungen verschont bleibt und zwar Nummer 8. Am häufigsten sind Segmente 2 und 3 mit jeweils 53,33% betroffen.
3.3.3.3 Vergleich Wall-Motion-Score und Strain
Ähnlich wie bei einer betroffenen LAD sind auch bei einer Stenose bzw. einem Verschluss der RCA in der Strainanalyse mehr Segmente von Störungen der Motilität betroffen. Besonders die Segmente 1,6,7,12 und 13, die im Wall-Motion-Score bei keinem unserer PatientInnen betroffen waren, sind in der Strainanalyse bei einigen PatientInnen betroffen.

Tabelle 12: Wall-Motion-Score bzw. Strainanalyse RCA
3.4. Vergleich EKG und Koronarangiographie

In der Literatur wird angenommen, dass bestimmte Ableitungen des Herzens für die unterschiedlichen Anteile des Herzmuskels stehen. So stehen die Ableitungen II,III und aVF für den diaphragmalen Anteil der Hinterwand des linken Ventrikels und werden von der RCA versorgt. Ableitung V1-V4 stehen für die Vorderwand und werden von der LAD versorgt und die Ableitung I,aVL und V5-V6 stehen für die Seitenwand und werden vom RCX versorgt. In einer Subanalyse haben wir untersucht, in wie viel Prozent die pathologischen EKG-Ableitungen mit dem betroffenen Gefäß aus der Koronarangiographie übereinstimmen.

Zeigte sich im EKG eine ST-Hebung in den Ableitungen II,III und aVF war in 82,28% der Fälle in der Koronarangiographie die RCA von einer Stenose oder Verschluss betroffen. War die ST-Hebung in den Ableitungen I,aVL, V5 oder V6 zu sehen, war in 45% der Fälle, der RCX betroffen. Waren die Ableitungen V1-V4 pathologisch verändert, waren bei 93,55% der betroffenen PatientInnen die LAD betroffen.

Übereinstimmung mit CA

Tabelle 13: Übereinstimmung EKG und Koronarangiographie
3.5. Ejection fraction

In einer Subanalyse wurde untersucht, wie sich die Ejection fraction, also der Anteil des Blutvolumens in Prozent, der vom linken Ventrikel während der Systole ausgeworfen wird, nach einem Herzinfarkt verhält. Dazu wurden die PatientInnen in vier Gruppen eingeteilt. Die erste Gruppe besteht aus jenen PatientInnen, die an einer Eingefäßerkrankung mit Stenose leiden, die zweite aus jenen mit Eingefäßerkrankung mit Verschluss eines Gefäßes, die dritte aus all jenen mit Eingefäßerkrankung und die vierte aus denen, die an einer Mehrgefäßerkrankung leiden. Beim Gesunden liegt die Ejection fraction bei 60-70%, das heißt ungefähr 30-40% des Blutes verbleiben nach der Systole im Ventrikel.

3.6. Global Strain

Ähnlich wie die Ejection fraction wurde der Global Strain untersucht. Dieser wurde aus der Strainanalyse errechnet. Die Frage war, wie sich der Global Strain verhält, wenn ein Gefäß eines/einer PatientInnen mit Eingefäßerkrankung stenosiert oder verschlossen ist, bzw. wenn ein/e Patient/in an einer Mehrgefäßerkrankung leidet. Dieser Global Strain wird in negativen Prozentpunkten angegeben, wobei die Werte umso besser sind, je negativer sie sind.

Der globale Strain ist bei stenosiertem Gefäß etwas besser als bei verschlossenem (-13,44% vs. -10,65%), jedoch ist dieser Unterschied nicht signifikant (p-Wert = 0,137). Zwischen einer Eingefäßerkrankung und Mehrgefäßerkrankung (-11,41% vs. -11,54%) zeigt sich ebenfalls kein signifikanter Unterschied (p-Wert = 0,915)
3.7. PatientInnen mit Echo bzw. ohne Echo

In einer Subanalyse wurde untersucht, ob sich die Patientengruppen, bei denen ein Echo durchgeführt wurde, bzw. bei denen keine Daten verfügbar waren, hinsichtlich dem Alter oder der Geschlechterverteilung unterscheiden. Von unseren 171 PatientInnen, die mit STEMI ins LKH West eingeliefert wurden, waren bei 92 Personen (53,80%) die echokardiographischen Untersuchungsbefunde gespeichert und verfügbar. Bei 79 PatientInnen (46,20%) waren diese nicht vorhanden. Das Verhältnis von Männern zu Frauen lag in der Gruppe mit Echo bei 77 zu 15 (83,70% zu 16,30%) im Vergleich zu 56 zu 23 (70,89% zu 29,11%) in der Gruppe bei PatientInnen ohne Echo. Der Altersschnitt bei PatientInnen bei denen eine Echokardiographie durchgeführt wurde, liegt bei 63,38 +/- 13,76 Jahren, und in der anderen Gruppe ohne Echo bei 66,49 +/- 13,41 Jahren. Das bedeutet, dass die PatientInnen bei denen ein Herzultraschall gespeichert war, im Schnitt um ungefähr 3 Jahre jünger waren, als jene, bei denen keine Befunde verfügbar waren.
3.8. Nebenbefunde

Die PatientInnen wurden dahingehend untersucht, ob eine linksventrikuläre Hypertrophie (LVH), eine Aortenklappensklerose, eine Aortenklappenstenose, eine Aortenklappeninsuffizienz (AINS), eine Mitralklappeninsuffizienz (MINS) oder eine Mitralringsklerose vorliegt.

Bei 14 der 92 (=14,89%) PatientInnen mit Echokardiographie lag eine linksventrikuläre Hypertrophie vor. Bei drei Patientinnen (3,19%) wurde einen Aortenklappenstenose diagnostiziert, bei elf (11,70%) eine Aortenklappensklerose. Drei PatientInnen (=3,19%) litten an einer Aortenklappeninsuffizienz, vier (=4,26%) an einer Mitralklappeninsuffizienz. Bei sieben der untersuchten Personen (=7,45%) wurde eine Mitralringsklerose entdeckt.
Kapitel 4. Diskussion

4.1. Troponinwerte

In der Gruppe der PatientInnen mit maximalen Troponinwerten unter 50 ng/ml dominieren die PatientInnen mit stenosiertem Gefäß. Liegen die Troponinwerte über 50 ng/ml ist meist ein Gefäß verschlossen. So liegt der durchschnittliche Troponinwert der PatientInnen mit Stenose bei 16,98 ng/ml, bei einem Verschluss bei 85,17 ng/ml. Hier zeigt sich ein signifikanter Unterschied zwischen okkludiertem und stenosiertem Gefäß (p-Wert = 8,94*10^{-7}).

Diese Aussage ist eher als Tendenz zu sehen, da die Messung des Troponin nicht zum gleichen Zeitpunkt erfolgte, sondern nur die höchsten Werte zur Auswertung herangezogen wurden. Für eine genauere Aussage, müsste die Blutabnahme für die Troponinbestimmung zu festgelegten Zeitpunkten erfolgen.
4.2. Ejection fraction

Interessant war, wie sich die Ejection fraction bei einer Eingefäßerkrankung mit Verschluss bzw. Stenose oder Mehrgefäßerkrankung verhält. Die Hypothese war, dass die Auswurffraktion des linken Ventrikels stärker eingeschränkt ist, wenn ein Gefäß verschlossen ist, als wenn dieses nur stenosiert ist, bzw. die Einschränkung noch größer ist, wenn der/die Patient/in an einer Mehrgefäßerkrankung leidet.

Es hat sich gezeigt, dass die Ejection fraction bei einer Eingefäßerkrankung mit Stenose mit durchschnittlich 48,91 % geringgradig eingeschränkt ist. Es besteht jedoch kein signifikanter Unterschied zu einer Eingefäßerkrankung mit Verschluss, hier liegt die durchschnittliche Auswurffraktion bei 46,70% (p-Wert = 0,660). Zwischen einer Eingefäßerkrankung und Mehrgefäßerkrankung zeigt sich ebenfalls kein signifikanter Unterschied (p-Wert = 0,208). Sind mehr als ein Gefäß betroffen liegt die durchschnittliche Auswurffraktion bei 44,07% im Vergleich zu 47,32% bei einer Eingefäßerkrankung.

4.3. Global Strain

Parallel zur Ejection fraction, war die Annahme, dass ein Verschluss eines Gefäßes den Global Strain stärker beeinflusst als eine Stenose. Außerdem sollte dieser bei einer Mehrgefäßerkrankung einem größeren negativen Einfluss unterliegen als bei einer Eingefäßerkrankung.

Zwischen Stenose und Verschluss zeigte sich ähnlich wie bei der Ejection fraction kein signifikanter Unterschied im Global Strain (p-Wert = 0,137). Bei einer Okklusion war dieser etwas stärker eingeschränkt als bei einer Stenose (-13,44% versus -10,65%)

Vergleicht man den Strain bei Eingefäß- und Mehrgefäßerkrankung, zeigt sich kein signifikanter Unterschied (p-Wert = 0,915). Somit kann man aus dem Strain nicht darauf schließen, ob der/die Patient/in an einer Eingefäß- oder Mehrgefäßerkrankung leidet (-11,41% versus -11,54%)
4.4. Echokardiographie

Die Strainanalyse brachte keinen zusätzlichen Nutzen. Es spielte keine Rolle ob als Grenzwert für ein pathologisches Segment „-16%“ oder „-10%“ angenommen wird. Bei PatientInnen mit STEMI und Stenose bzw. Verschluss eines Gefäßes zeigten sich große Anteile des Herzmuskels bzw. Segmente die grundsätzlich nicht vom jeweiligen Gefäß versorgt werden, von Störungen der Motilität betroffen. Auch lässt sich mit der Strainanalyse nicht vorhersagen ob eine Ein- oder Mehrgefäßerkrankung (p-Wert = 0,274) vorliegt bzw. ob ein Gefäß stenosierte oder verschlossen ist (p-Wert = 0,297).
4.5. Limitation

Für eine klare Aussage, wäre eine größere Patientengruppe sinnvoll. Vor allem im Bereich der Eingefäßerkrankungen mit Stenose bzw. Verschluss des Ramus Circumflexus waren nur eine sehr geringe Anzahl an PatientInnen untersucht worden, dies könnte die Aussagekraft unserer statistischen Ergebnisse einschränken.
Die Daten der untersuchten PatientInnen habe ich aus der elektronischen Datenbank „Medocs“ übernommen. Trotz gründlichem Vorgehen und Überprüfung der Daten können Abschreibfehler nicht vollkommen ausgeschlossen werden.
Kapitel 5: Zusammenfassung

Gruppe 1: Eingefäßerkrankung mit Stenose (15 PatientInnen, 11 Männer, 4 Frauen)
Gruppe 2: Eingefäßerkrankung mit Verschluss (29 PatientInnen, 25 Männer, 4 Frauen)
Gruppe 3: Mehrgefähßerkrankung (48 PatientInnen, 41 Männer, 7 Frauen).

Es wurde außerdem der Wall-Motion-Score mit der Strain Analyse verglichen, und ob es Unterschiede im Troponinanstieg, in der Ejection fraction und im Global Strain zwischen den Gruppen gibt.

Es konnte gezeigt werden, dass sich die Gruppen bezüglich der betroffenen Segmente im Wall-Motion-Score nicht signifikant unterscheiden. Die Strainanalyse brachte bei PatientInnen mit STEMI keinen zusätzlichen Nutzen, da sich die betroffenen Segmente nicht mit dem versorgenden Gefäß deckten. Bei der Ejection fraction und Global Strain zeigten sich keine signifikanten Unterschiede zwischen den Gruppen. Lediglich im Troponinanstieg zeigten sich signifikante Unterschiede zwischen den Gruppen.
Schlussfolgerung:
Die Echokardiographie ist bei PatientInnen hinsichtlich der Vorhersage ob eine Eingefäßerkrankung mit Stenose oder Verschluss oder eine Mehrgefäßerkrankung vorliegt nicht aussagekräftig. Auch die Strain Analyse brachte keinen zusätzlichen Nutzen.
6. Referenzen

